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How might we teach machine learning systems about what wine tastes like,
or how to appreciate the similarities in different kinds of artwork?

On its face, this question seems absurd because these notions of similarity
are impossible to characterize in meaningful ways. Our work explores what
happens when we can embrace this ambiguity. We use new kinds of semi-
supervision to learn abstract, intuitive notions of perceptual similarity when
labels or dense similarity measures are not available.

Before we can learn about perceptual similarity, we must first show how to
capture intuitive notions of similarity from humans in an efficient and princi-
pled way that makes as few assumptions as possible about the data structure.
Then, we outline ways to combine expensive human expertise with dense ma-
chine kernels to ease the human annotation burden. Finally, we will discuss our
work on creating a large-scale dataset of artwork that the research community

can use to explore these ideas.
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CHAPTER 1
INTRODUCTION

There is a tension in the field of computer vision. As computer scientists,
we primarily work with systems using reproducible, self-contained processes
that have quantifiable inputs and discrete outputs. However, these systems are
intended to model the real world, a messy unpredictable environment that does
not lend itself well to easily-describable formulations. Worse still, there is inter-
est in creating systems intended to mimic the human brain, an incomprehensi-
ble black-box system with complicated hidden inner state, inconsistent outputs,

and extremely limited introspection capabilities.

It is thought that creating “thinking machines” by modeling the brain is a
step toward “strong intelligence,” the idea that artificially intelligent systems
will one day be able to surpass humans in problem-solving abilities. How-
ever, achieving strong intelligence is orthogonal to the related goal of achieving
“strong intuition,” the unconscious humanistic awareness of the relationships
between similar things. This sort of intuition is a major source of human cre-
ativity and enjoyment. Intuition is how music punks know that Prince music
sounds more like Michael Jackson than it does to Avril Lavigne’s work, how
foodies know that oolong tea tastes more similar to sencha than it does to chai,
and how graffiti artists know which styles and personal touches make for aes-

thetically pleasing artwork.

Unfortunately for the scientist — but very fortunately for the artist — the
reasoning behind intuitive judgments are not necessarily expressible in words.
Computer vision continues to make steady progress in domains where expert

teachers are able to distill and serialize their intuition down to a codified cur-



riculum, but it is less obvious how to serialize our thoughts about, say, what
coffee tastes like or why two artists” work is similar. For example, fine-grained
species recognition can rely on detailed field guides, centuries of ornithological
expertise, and an abundance of discrete labeled training data. However, what
can we do when this “bottom-up” approach is not available? How can we learn
about the layman’s perception of the similarity of two food tastes, for example,

without having to rely on expert chefs?

As one first step toward this goal, our general approach is to learn “concept
embeddings,” vector spaces where distance corresponds with similarity percep-
tion. To do this, our work focuses on three primary questions toward the goal

of learning strong intuition:

1. What are the quantifiable unit of similarity, and how can we efficiently col-

lect this information from large crowds of non-experts?

2. How can we learn similarity kernels on large-scale datasets that are infea-

sible to densely label by hand?

3. As an example domain, how can these ideas be applied to learn about
artwork media and style on a very large scale? What can the limitations
of computer vision systems on artwork teach us about the representation

gap between the realistic world and the world rendered through an artist’s

hands?

In Chapter 2, we consider triplets as the units of strong intuition. Each triplet
(x1, X2, x3) is an assertion of the form “Object x; is more similar to object x, than
object x3.” Triplets are desirable to other forms of annotation because they can
be collected from crowds in a straightforward fashion without relying on do-

main expertise. We show that thousands of these triplet annotations can be col-



lected in a cost-efficient manner using novel user interfaces on crowdsourcing

platforms. This lays the foundation for crowd annotation used in later work.

In Chapter 3, we extend this general idea further to learn intuitive similarity
at very large scale, combining sparse expensive human expertise with dense,
cheap automated kernels. Spaces learned this way require a fraction of the hu-

man labeling power than ordinary crowd kernels alone.

Finally, as a bridge back to explicit semantics, we lay the groundwork for ex-
ploring artistic intuition in Chapter 4 by collecting a very large-scale collection
of digital artwork using a combination of computer vision and efficient crowd-
sourcing for annotation. We use this dataset to probe how current computer
vision systems handle the “representation gap” between photography and styl-

ized artwork.



CHAPTER 2
COST-EFFECTIVE HITS FOR RELATIVE SIMILARITY COMPARISONS

2.1 Introduction

Recently in machine learning [63, 31, 66, 47], there has been a growing interest in
collecting human similarity comparisons of the form “Is a more similar to b than
to ¢?” These comparisons are asking humans to provide constraints of the form
d(a,b) < d(a, c), where d(x,y) represents some perceptual distance between x and
y. We will refer to these constraints as triplets. By collecting these triplets from
humans, researchers can learn the structure of a variety of data sets. For exam-
ple, the authors of [47] were able to learn music genres from triplet comparisons
alone with no other annotations. Specifically in computer vision, human sim-
ilarity comparisons are useful for creating perceptually-based embeddings. In
[2], the authors created a two dimensional embedding where one axis repre-
sented the brightness of an object, and the other axis represented the glossiness
of an object. In this work we focus on creating perceptual embeddings from

images of food.

For any set of n points, there are on the order of by n* unique triplets. Col-
lecting such a large amount of triplets from crowd workers quickly becomes
intractable for larger datasets. For this reason, a few research groups have pro-
posed more intelligent sampling techniques [63, 31]. However, the difficulty of
collecting a large number of triplets is also related to the time and monetary cost
of collecting data from humans. To investigate this relationship more closely, we
chose to study a triplet human intelligence task (HIT). In this work we provide

a better understanding of how the HIT design affects not only the time and cost
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Figure 2.1: Questions of the form “Is object 2 more similar to b than to ¢?” have
been shown to be a useful way of collecting similarity comparisons from crowd
workers. Traditionally these comparsions, or triplets, would be collected with a
UI shown at the left. In this work we collect triplets using a grid of images and
ask the user to select the two most similar tasting foods to the anchor. The grid
UL, right, allows us to collect 8 triplets whereas the triplet UI, left, only yeilds a
single triplet.

of collecting triplets, but also the quality of the embedding, which is usually the

researcher’s primary concern.

Traditionally, an MTurk task designed to collect triplets would show crowd
workers three images, labeled a, b, c. The worker is then asked to select either
image b or image ¢, whichever looks more similar to image a. See the top of
Fig. 2.1 for an example. Although this is the most direct design to collect triplets,
it is potentially inefficient. Instead, we chose to investigate triplets collected
from a grid of images. In the grid format, a probe image—analogous to image
“a” in the triplet representation—is shown next to a grid of n images. The crowd
worker is then asked to choose the k most similar images from the grid. This
layout allows us to collect k images that are more similar to the probe image than
the remaining n — k images, yielding k(n — k) triplets with one screen to the user.
We can change the number of triplets per grid answer by varying »n and k, but
this also affects the amount of effort a crowd worker must exert to answer the
question. We are not the first to realize that a grid is more efficient for collecting
triplets—such techniques were also used by [68, 63]—but we believe we are the

first to investigate more thoroughly the effectiveness of triplets collected with



a grid. This is important because previous authors acknowledge neither the

efficiency gain nor the potential drawbacks of the grid triplets they rely on.

This paper outlines several Ul modifications that allow researchers to multi-
ply the number of triplets collected per screen for perceptual similarity learning.
We show that simple changes to the crowdsourcing Ul—instead of fundamental
changes to the algorithm — can lead to much higher quality embeddings. In our
case, using our grid format allows us to collect several triplet comparisons per
screen. This leads to much faster convergence than asking one triplet question
at a time. Researchers with tight deadlines can create reasonable embeddings
with off-the-shelf algorithms and a low crowdsourcing budget by following our

guidelines.

Our contributions are:

A set of guidelines to use when collecting similarity embeddings, with
insights on how to manage the trade-off between user burden, embedding

quality, and cost;

e A series of synthetic and human-powered experiments that prove our

methods’ effectiveness;

e Evidence that each individual triplet sampled with a grid may capture
less information than a uniformly random triplet, but that their quantity

outweighs the potential quality decrease;

e A dataset of 100 food images, ingredient annotations, and roughly 39% of
the triplet comparisons that describe it, to be made available upon publi-

cation.



2.2 Related Work

Perceptual similarity embeddings are useful for many tasks within the field,
such as metric learning [21], image search/exploration [20], learning semantic
clusters [24], and finding similar musical genres and artists [66, 47]. Our work
is useful to authors who wish to collect data to create such embeddings. The
common idea behind all of this work is that these authors use triplets to collect

their embeddings.

In our work, we collect human similarity measurements of images in the
form of triplets. The authors of [27] proposed an algorithm for collecting triplets
from humans as well. However in [27], the triplets that were collected did not
have a probe image. because they formulated the question differently [75] fo-
cuses on estimating user preferences from crowd sourced similarity compar-

isons. However [75] uses pairwise comparisons rather than triplets.

Our work bears much similarity to Crowd Kernel Learning [63] and Active
MDS [31]. These algorithms focus on collecting triplets one at a time, but sam-
pling the best triplets first. The idea behind these systems is that the bulk of
the information in the embedding can be captured within a very small num-
ber of triplets, since most triplets convey redundant information. For instance,
Crowd Kernel Learning [63] considers each triplet individually, modeling the
information gain learned from that triplet as a probability distribution over em-
bedding space. Active MDS [31] consider a set of triplets as a partial ranking
with respect to each object in the embedding, placing geometric constraints on
the locations where each point may lie. In our work we focus on altering Ul

design to improve speed and quality of triplet collection.



Figure 2.2: Top: An example cuisine embedding, collected with our 16-choose-
4 grid Ul strategy. This embedding cost us $5.10 to collect and used 408 screens,
but yielded 19,199 triplets. It shows good clustering behavior with desserts
gathered into the top left. The meats are close to each other, as are the salads.
Bottom: An embedding with 408 random triplets. This embedding also cost
$5.10 to collect, but the result is much dirtier, with worse separation and less
structure. Salads are strewn about the right half of the embedding and a steak
lies within the dessert area. From our experiments, we know that an embedding
of such low quality would have cost us less than $0.10 to collect using our grid
strategy.

2.3 Method

Instead of asking “Is a more similar to b or ¢?”, we present humans with a probe
image and ask “Mark k images that are most similar to the probe,” as in Fig. 2.1.
This way, with a grid of size n, a human can generate k - (n — k) triplets per task
unit. This kind of query allows researchers to collect more triplets with a single
screen. It allows crowd workers to avoid having to wait for multiple screens to

load, especially in cases where one or more of the images in the queried triplets
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Figure 2.3: Random triplets have a different distribution than grid triplets.
The top histogram shows the occurrences of each object within human answers
for “Grid 16 choose 4” triplets. The bottom histogram shows a histogram of
sampling random triplets individually. 59520 triplets were collected for both
histograms. Each object occurs in our answers about i = 1785 times, but the
variation when using grid triplets (top) is much wider (& = 187.0) than the
variation when sampling triplets uniformly (bottom, 6 = 35.5). This effect is
not recognized in the literature by authors who use grids to collect triplets. We
study its impact in our experiments.

do not change. This also allows crowd workers to benefit from the parallelism
in the low-level human visual system [72]. Since many of these observations
involve human issues, we conclude that the right way of measuring embedding
quality is with respect to human cost rather than the number of triplets. This
human cost is related to the time it takes crowd workers to complete a task and
the pay rate of a completed task. Some authors [68, 63] already incorporate
these ideas into their work but do not quantify the improvement. Our goal is to

formalize their intuitive notions into hard guidelines.

It is important to note that the distribution of grid triplets is not uniformly ran-
dom, even when the grid entries are selected randomly and even with perfect

answers. To our knowledge, no authors that use grids acknowledge this poten-
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Figure 2.4: Over the course of a synthetic experiment, we collect triplets, either
randomly one at a time (thick black line) or in batches using our grid UI (col-
ored lines). When the embedding quality is viewed as the number of triplets
gathered (top two graphs), it appears that sampling random triplets one at a
time yields a better embedding. However, when viewed as a function of human
effort, grid triplets create embeddings that converge much faster than individu-
ally sampled triplets. Here, quantity outweighs quality as measured by Leave-
One-Out NN Error (left graphs) and Triplet Generalization Error (right graphs).
See text for details.

tial bias even though it deteriorates each triplet’s quality, as we will show in our
experiments. Figure 2.3 shows a histogram of how many times each object oc-
curs in our triplet answers. When using grid sampling, some objects can occur
far more often than others, suggesting that the quality of certain objects” place-
ment within the recovered embedding may be better than others. The effect is
less pronounced in random triplets, where objects appear with roughly equal
frequency. This observation is important to keep in mind because the unequal

distribution influences the result.
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2.4 Synthetic Experiments

We aimed to answer two questions: Are the triplets acquired from a grid of lower
quality than triplets acquired one by one? Second, even if grid triplets are lower quality,
does their quantity outweigh that effect? To find out, we ran synthetic “Mechani-
cal Turk-like” experiments on synthetic workers. For each question, we show
a probe and a grid of n objects. The synthetic workers use Euclidean distance
within a groundtruth embedding to choose k grid choices that are most similar
to the probe. As a baseline, we randomly sample triplet comparisons from the
groundtruth embedding using the same Euclidean distance metric. After col-
lecting the test triplets,we build a query embedding with t-STE [66] and com-
pare this embedding to the groundtruth. This way, we can measure the quality
of our embedding with respect to the total amount of human effort, which is the
number of worker tasks. This is not a perfect proxy for human behavior, but
it does let us validate our approach, and should be considered in conjunction

with the actual human experiments that are described later.

Datasets. We evaluated our Ul paradigm on three datasets. First, we used
MNIST1k, a handwritten digit dataset containing 1,000 random digits across 10
classes. To generate groundtruth comparison triplets, we use Euclidean distance
between feature vectors. Second, we use the music similarity dataset from [66]
as a point of comparison. This set contains 9,107 human-collected triplets for
412 artists. Finally, we present results on a subset of LFW [29], the Labeled
Faces in the Wild dataset. We considered identities that have between 32 and
77 images in the set, using the face attribute vectors extracted by [39]. This
leaves us with a total of 938 73-dimensional feature vectors from 20 identities. To

generate groundtruth triplets, we again considered Euclidean distance. These

11



three datasets provide us with a healthy balance of synthetic and real-world

nonvectorial data.

Metrics. Our goal is not to build a competitive face or written digit recog-
nizer; rather, we simply wish to evaluate the quality of a perceptual embedding
constructed with the help of synthetic workers. To do this, we evaluate each
embedding’s quality using two metrics from [66]: Triplet Generalization Error,
which counts the fraction of the groundtruth embedding’s triplet constraints
that are violated by the recovered embedding; and Leave-One-Out Nearest
Neighbor error, which measures the percentage of points that share a category
label with their closest neighbor within the recovered embedding. As pointed
out by [66], these metrics measure different things: Triplet Generalization Error
measures the triplet generator Ul’s ability to generalize to unseen constraints,
while NN Leave-One-Out error reveals how well the embedding models the
(hidden) human perceptual similarity distance function. We use these metrics

to test the impact that different Uls have on embedding quality.

Results. Across all three datasets, our experiments show that even though
triplets acquired via the grid converge faster than random triplets, each individ-
ual grid triplet is of lower quality than an individual random triplet. Figure 2.4
shows how the music dataset embedding quality converges with respect to the
number of triplets. If triplets are sampled one at a time (top two graphs), ran-
dom triplets converge much faster on both quality metrics than triplets acquired
via grid questions. However, this metric does not reveal the full story because
grid triplets can acquire several triplets at once. When viewed with respect to
the number of screens (human task units), as in the bottom two graphs in Fig-

ure 2.4, we now see that the grid triplets can converge far faster than random

12



with respect to the total amount of human work. This leads us to conclude that
“quality of the embedding wrt. number of triplets” is the wrong metric to op-
timize because framing the question in terms of triplets gives researchers the
wrong idea about how fast their embeddings converge. A researcher who only
considers the inferior performance of grid triplets on the “per-triplet” metric
will prefer sampling triplets individually, but they could achieve much better
accuracy using grid sampling even in spite of the reduced quality of each in-
dividual triplet, and as we shall see in our human experiments, this translates
into decreased cost for the researcher. In other words, efficient collection Uls are
better than random sampling, even though each triplet gathered using such Uls

does not contain as much information.

Why does this happen? In all cases, the 12 images within the grid were cho-
sen randomly; intuitively, we expect a uniform distribution of triplets. How-
ever, because certain objects are more likely than others to be within each grid’s
“Near” set, certain objects will appear in the triplet more often than others. This
leads to a nonuniform distribution of correct triplets, as shown in Fig. 2.3. Here,

we can see that the non-uniformity creates a difference in performance.

The other two datasets—MNIST and Face—show very similar results so we
do not report them here. In all cases, any size of grid Ul outperforms random
selection. However, we do see a small spread of quality across different grid
sizes. As in the music dataset, the error is lowest when we force our synthetic
workers to select 3 close images out of 12 as opposed to selecting the 4, 5, or
6 closest images. This difference is more pronounced in the “Leave-One-Out
NN” metric. This could be because selecting the 3 closest images allows the

metric to be more precise about that image’s location in the embedding since

13



it is compared to fewer neighbors. Our synthetic workers always give perfect

answers; we do not expect imperfect humans to reflect this effect.

Figure 2.5: Example images from our dataset. The images in our dataset span a
wide range of foods and imaging conditions. The dataset as well as the collected
triplets will be made available upon publication.

2.5 Human Experiments

These synthetic experiments validate our approach, but they have several prob-
lems. In particular, there is no reason why humans would behave similarly to
a proxy oracle as described above. Further, we must also consider the effort of
our workers, both in terms of the time it takes to complete each task and how
much money they can make per hour—metrics that are impossible to gather
via synthetic means. To verify that these approaches build better embeddings
even when humans provide inconsistent triplets, we ran Mechanical Turk ex-
periments on a set of 100 food images sourced from Yummly recipes with no
groundtruth. The images were filtered so that each image contained roughly
one entree. For example, we avoided images of sandwiches with soups. Exam-
ple images are shown in Fig. 2.5. For each experiment, we allocated the same

amount of money for each hit, allowing us to quantify embedding quality with
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Figure 2.6: We show the median time that it takes a human to answer one grid.
The time per each task increases with a higher grid size (more time spent look-
ing at the results) and with a higher required number of near answers (which
means more clicks per task). Error bars are 25 and 75-percentile.

respect to cost. Upon publication, the dataset as well as the collected triplets

will be available for download.

Design. For each task, we show a random probe and a grid of n random
foods. We ask the user to select the k objects that “taste most similar” to the
probe. We varied n across (4, 8, 12, 16) and varied & across (1,2,4). We ran three
independent repetitions of each experiment. We paid $0.10 per HIT, which in-
cludes 8 usable grid screens and 2 catch trials. To evaluate the quality of the
embedding returned by each grid size, we use the same “Triplet Generaliza-
tion Error” as in our synthetic experiments: we gather all triplets from all grid
sizes and construct a reference embedding via t-STE. Then, to evaluate a set of
triplets, we construct a target embedding, and count how many of the refer-
ence embedding’s constraints are violated by the target embedding. Varying

the number of HITs shows how fast the embedding’s quality converges.

Baseline. Since we wish to show that grid triplets produce better-quality em-
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Figure 2.7: Results of our human experiments on the food dataset. Left graph:
Triplet generalization error when viewed with respect to the total number of
triplets. Right: The same metric when viewed with respect to the total cost (to
us) of constructing each embedding. The left graph implies that a randomly-
sampled embedding appears to converge faster. However, when quality is
viewed with respect to cost, we find that an embedding generated using a 16-
choose-4 grid cost $0.75, while an embedding with random triplets of similar
quality costs $5.00. It is clear that the grid Ul saves moneys; in this case, by over
a factor of 6.

beddings at the same cost as random triplets, we should collect random (a, b, ¢)
comparisons from our crowd workers for comparison. Unfortunately, collect-
ing all comparisons one at a time is infeasible (see our “Cost” results below), so
instead, we construct a groundtruth embedding from all grid triplets and uni-
formly sample random constraints from the embedding. This is unlikely to lead
to much bias because we were able to collect 39% of the possible unique triplets,
meaning that t-STE only has to generalize to constraints that are likely to be

redundant. All evaluations are performed relative to this reference embedding.

2.5.1 Results

Two example embeddings are shown in Fig. 2.2.

Cost. Across all experiments, we collected 14,088 grids, yielding 189,519
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unique triplets. Collecting this data cost us $158.30, but sampling this many
random triplets one at a time would have cost us $2,627.63, which is far out-
side our budget'. If we had used the 16-choose-4 grid strategy (which yields
48 triplets per grid), we would be able to sample all unique triplets for about

$140—a feat that would cost us $6737.50 by sampling one at a time.

Grid n choose k | Error at$1 Time/screen (s) Wages ($/hr)
n:4, k1 0.468 3.57 $10.09
k:2 0.369 3.45 $10.45

n:8, k1 0.400 3.04 $11.85
k: 2 0.311 5.79 $6.22

k: 4 0.273 7.65 $4.71

n:12, k1 0.406 4.17 $8.64
k: 2 0.294 6.78 $5.31

k: 4 0.235 8.67 $4.15

n:16, k1 0.413 6.72 $5.36
k: 2 0.278 8.84 $4.07

k: 4 0.231 9.59 $3.76
Random 0.477 - -
CKL 0.403 - -

Table 2.1: Results of our actual Mechanical Turk experiments. We ask workers
to choose the k most similar objects from a grid of n images. We invest $1 worth
of questions, giving us 100 grid selections. When n and k are large, each answer
yields more triplets. Large grids require more time to complete, but many of
our tasks (bold) still pay a respectable wage of more than $6 per hour.

Quality. As we spend more money, we collect more triplets, allowing t-STE
to do a better job generalizing to unseen redundant constraints. All embeddings
converge to lower error when given more triplets, but this convergence is not
monotonic because humans are fallible and there is randomness in the embed-
ding construction. See Fig. 2.7 for a graphical comparison of grids with size
4,812, and 16. When viewed with respect to the number of triplets, random

triplets again come out ahead; but when viewed with respect to cost, the largest

!There are 100 - 99 - 98/2 = 485, 100 possible unique triplets and each triplet answer would
cost one cent. We additionally need to allocate 10% to Amazon’s cut and 20% of our tasks are
devoted to catch trials.
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grid converges more quickly than others, and even the smallest grid handily

outperforms random triplet sampling.

This time, we observe a large separation between the performance of vari-
ous grid sizes. Grid 16-choose-4, which yields 4 - 12 = 48 triplets per answer,
uniformly outperforms the rest, with Grid 12-choose-4 (at 4 - 8 = 32 triplets per
answer) close behind. Both of these outperform 8-choose-4 (16 triplets/answer)

and 4-choose-2 (4 triplets/answer).

We also compare our performance with the adaptive triplet sampling strat-
egy of [63]. CKL picks triplets one-at-a-time but attempts to select the best triplet
possible to ask by maximizing the information gain from each answer. In our
experiments, it did not outperform random sampling; further analysis will be

future work.

Though catch trials comprised 20% of the grid answers we collected, we
found that the results were generally of such high quality that no filtering or

qualification was required.

Time. Fig. 2.6 shows how fast each human takes to answer one grid question.
Our smallest task was completed in 3.5 seconds ( ), but even our largest grid
(16 choose 4) can be completed in less than 10 seconds. Times varies widely
between workers: our fastest worker answered 800 questions in an average of

2.1 seconds per grid task for 8-choose-1 grids.

Worker Satisfaction. At our standard 1¢per-grid/$0.10-per-HIT rate, our
workers are able to make a respectable income, shown in Tab. 2.1. The smallest
tasks net more than $10/hour by median, but even our largest task allows half

of our workers to make $3.76 for every hour they spend. If the fastest, most
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skilled worker sustained their average pace in 8-choose-1 grids, they could earn

over $17 per hour.

Since there is a trade-off between grid size and worker income, it is impor-
tant to consider just how far we can push our workers without stepping over
the acceptable boundaries. Across all of our experiments, we received no com-
plaints, and our tasks were featured on multiple HIT aggregators including
Reddit’s HitsWorthTurkingFor subreddit and the “TurkerNation” forums

as examples of bountiful HITs. Our workers did not feel exploited.

According to the HitsWorthTurkingFor FAQ 2, “the general rule of
thumb . ..is a minimum of $6/hour.” Though HITs below this amount may be
completed, the best workers may pass for more lucrative HITs. Being featured
in forums such as Hit sWorthTurkingFor gave us an advantage since our hit
was visible to a very large audience of potential skilled turkers. Though high

payouts mean higher cost, in our case, the benefit outweighed the drawback.

2.6 Guidelines and conclusion

Throughout this paper, we have shown that taking advantage of simple batch
UI tricks can save researchers significant amounts of money when gathering
crowdsourced perceptual similarity data. Our recommendations can be sum-

marized as follows:

e Rather than collecting comparisons one-at-a-time, researchers should use

a grid to sample comparisons in batch, or should use some other UI

2h’ctp: / /reddit.com/r/HITsWorthTurkingFor/wiki/index
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paradigm appropriate to their task. However, researchers should not as-
sume that such “batch” comparisons are of identical quality to uniformly

random sampling—this is a trade-off that should be considered.

o If cost is an issue, researchers should quantify their results with respect
to dollars spent. We found that using our simple Ul paradigm can creates
embeddings of higher quality than those created using algorithms that

pick the best triplet one-at-a-time.

e Researchers should continuously monitor the human effort of their
tasks, so that they can calculate an appropriate target wage and stand a
better chance of being featured on “Good HIT” lists and be seen by more

skilled Turkers.

e When using grids to collect triplets, researchers should consider the trade-

off between size and effort. Consider that an n-choose-k grid can yield
k(n — k) (2.1)

triplets per answer. Since this has a global maximum at »n = 2k, one appro-
priate strategy is to select the largest n that yields a wage of $6/hour and

set k equal to n/2.

There are several opportunities for future work. First, we should better
quantify the relationship between n, k, and task completion time to build a more
accurate model of human performance. Second, we should continue investigat-
ing triplet sampling algorithms such as “CKL"” as there may be opportunities to
adaptively select grids to converge faster than random, giving us advantages of

both strategies.
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CHAPTER 3
LEARNING CONCEPT EMBEDDINGS WITH COMBINED
HUMAN-MACHINE EXPERTISE

3.1 Introduction

Supervised learning tasks form the backbone of many state-of-the-art computer
vision applications. They help researchers classity, localize, and characterize ac-
tions and objects. However, if the researcher’s goal is instead to interactively
explore the latent structure of a dataset, discover novel categories, or find la-
beling mistakes, it is unclear what kind of supervision to use. Sometimes the
data does not fall into well-defined taxonomic categories, or perhaps it is simply
too expensive to collect labels for every object. Sometimes the expert wishes to
capture a concept—some intuitive constraint that they cannot articulate—about
how the data should be structured, but does not have the time to specify this
concept formally. If we wish to build models that capture concepts, we need a

new approach.

Our overall goal is to generate a concept embedding. Distances within this
space should correspond with a human’s intuitive idea of how similar two ob-
jects are. Many researchers use similar embeddings to enhance the performance
of classifiers [61, 11, 68], build retrieval systems [66, 47], and create visualiza-

tions that help experts better understand high-dimensional spaces [15, 14].

Concepts cannot always be inferred from appearance. Within the past few
years, huge research advances have begun to produce systems that are excellent

at comparing images based on visual cues. For example, one can imagine build-
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Figure 3.1: Our SNaCK embeddings capture human expertise with the help of
machine similarity kernels. For example, an expert can use this concept em-
bedding of a subset of CUB-200 to quickly find labeling mistakes. Red-headed
Woodpeckers are visually dissimilar to Pileated Woodpeckers, but SNaCK
moved a Red-headed Woodpecker into the Pileated Woodpecker cluster be-
cause of its appearance. This is probably a labeling mistake in CUB-200, and
this SNaCK embedding helped us discover it. The cluster of three visually
similar vireo species in the embedding center may be another good place to
look for label problems.

ing a CNN to compare food dishes based solely on their appearance. However,
if the concept we wish to capture is similarity in taste, the task becomes harder.
Although taste and appearance are often correlated, any poor diner who has
confused guacamole and wasabi knows that foods that taste very different may
look deceptively similar because the strongest visual cues may not be reliable.
This particular taste difference is difficult to capture without expert guidance.
Similarly, when classifying birds, the goal is often not to group similar-looking

birds together, but to group birds of the same species together. Experts know
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that appearance is important for this classification task, but there are often large
visual differences between the appearance of male and female birds of the same
species or between juveniles and adults. In these cases, domain-specific exper-

tise can greatly improve the resulting embedding.

Expert annotations can be expensive to collect. In order to capture abstract
concepts known only by humans, the expert must provide hints [1] to help guide
the learning process. Unfortunately, asking experts to exhaustively and author-
itatively annotate the dataset is not always possible [4]. Further, hints are most
useful when they are task-specific [14]: if the user wishes to discover some re-
lationship that is not apparent between objects, they should be able to specity
whatever hints they feel would best capture those constraints. Previous work
that uses perceptual annotations [66, 71] note that collecting all hints based on
relative similarity comparisons can take quadratic or cubic cost. Hiring actual
domain experts is often out of the question, and even crowdsourcing websites

such as Mechanical Turk can be prohibitively expensive.

It seems reasonable that one can use machine kernels to speed up the pro-
cess of collecting hints. In this work, we show how to overcome the inherent
human scalability problems by using human hints to refine a concept embed-
ding generated by an automatic similarity kernel. Our main contributions are

as follows:

e We present a novel algorithm, “SNE-and-Crowd-Kernel Embedding”
(SNaCK), that combines expert triplet hints with machine assistance to

efficiently generate concept embeddings;

e We show how to use our SNaCK embeddings for tasks such as visualiza-

tion, concept labeling, and perceptual organization, and show that SNaCK
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Figure 3.2: Overview of our SNE-and-Crowd-Kernel (“SNaCK”) embedding
method. As input, SNaCK accepts a dataset of objects, a similarity kernel K,
and a set of expert constraints in the form of “Object i should be closer to j than
it is to k”, which may be inferred from crowdsourcing or label information. The
output is a low-dimensional concept embedding that satisfies the expert hints
while preserving the structure of K.

Embedding

embeddings are competitive with the state of the art in these tasks.

We also present the following minor contributions:

e A dataset of 950,000 crowdsourced perceptual similarity annotations on

10,000 food dishes from Yummly;

o A deep-learned food classifier that greatly improves upon the previous

state-of-the-art performance on the Food-101 dataset [9];

o A proof that two perceptual embedding algorithms in common use, CKL
and t-STE, are equivalent for the common 2D case for certain parameter
settings. To our knowledge, this connection has never been acknowledged

or explored before.
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3.2 Background and related work

Perceptual embeddings. Our work builds upon a large body of existing per-
ceptual embedding literature. Notably, our method combines aspects of both ¢-
Distributed Stochastic Neighbor Embedding (t-SNE, from [65]) and Stochastic Triplet
Embedding (t-STE, from [66]). The objective and motivation behind these ap-
proaches are fundamentally different: t-SNE creates a low-dimensional visual-
ization using an automatic kernel from a higher-dimensional space and t-STE
generates an embedding from scratch that satisfies as many human-provided
similarity constraints as possible. Nevertheless, we show that they are comple-
mentary. Interestingly, there is a strong mathematical similarity between t-STE
and the Crowd Kernel Learning (CKL) method described in [63]; in fact, in the
supplementary material, we show that CKL and t-STE are equivalent for certain
parameter choices. To our knowledge, this connection has not been explored

before.

Triplet constraints and other kinds of hints. In our work, we use triplet
constraints, where the crowd or the expert provides tuples of the form (i, j, k)
to indicate that object i seems more similar to object j than i does to object «.
We take these constraints to mean that object i should thus be closer to object
Jj than i is to k in the desired concept embedding. These relative comparisons
allow the expert to directly specify perceptual constraints about objects. When
compared to other forms of supervision, triplets are one of the most flexible
options in practical use because they do not rely on a priori knowledge, are in-
variant to scale, and are stable between and within subjects. Consider other
forms of supervision: placing objects into category labels may not map to the ab-

stract concepts the expert wishes to capture and it requires the entire taxonomy

26



to be known up-front. Even with unlimited time and a patient expert, the la-
bel results may be subject to scrutiny: one human expert solving the ImageNet
Large Scale Visual Recognition Challenge [59] took approximately a minute to
label each image and still made 5.1% error. The CUB-200 [67] dataset also has

labeling errors, which we will show in Sec. 3.4.1.

Pairwise similarity judgments are another common form of supervision, but
they have own problems. The classic 7-point Likert scale induces quanti-
zation into the metric and may not be reliable between people. Several re-
searchers [49, 35, 15] note that methods based on triplet comparisons are more
stable than such pairwise measures. In an experiment comparing the speed
and effectiveness of pairwise, triplet, and spatial arrangement embeddings, [15]
found that triplet comparisons yield the least variance of human perceptual sim-
ilarity judgments than other methods, though triplet tasks also took humans the
longest to complete. One disadvantage of triplet constraints is that triplet em-
beddings require at least O(n?) triplet constraints to be uniquely specified [36],
even though many triplets are strongly correlated and do not contribute much
to the overall structure [61]. This is why we propose using a machine vision
system to do most of the heavy lifting and reduce the number of required triplet

constraints.

Incorporating human judgments in automatic systems. Of course, we are
not the first researchers to show the benefits of combining human and machine
expertise. For example, [11, 68] build a classification system by bringing hu-
mans “into the loop” at runtime. Other work allows humans to specify an
attribute relationship to influence the label training [7]. These approaches are

most useful when classification is the end goal rather than visualization or per-
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ceptual organization. Another branch of work starts from an automatically-
generated distance matrix and uses human constraints to further refine the re-
covered clustering or distance metric, typically by asking the human to provide
pairwise “Must-link” or “Must-not-link” constraints [46, 74,76, 64, 77]. In some
works, the human can provide an attribute explanation for their choice [40]. In
Sec. 3.4.1, we show that our approach is competitive with many of these con-

strained clustering algorithms in a semi-supervised labeling task.

Other particularly relevant contributions re-cast t-STE as a multiple metric
learning problem [79]. Here, the humans are asked to evaluate multiple aspects
of objects” similarity (eg. similarity of different parts), and the final embedding
is learned to jointly satisfy as many aspects as possible. Similarly, [3] learns mul-
tiple maps from a single set of triplet questions. Our work is similar in spirit, but
our focus on jointly learning both human and machine-judged similarity rather
than just multiple aspects of human similarity sets us apart from these works
and others such as [24], which focus on creating more efficient user interfaces to
gather data from crowdsourcing without using machine vision to accelerate the

process.

Embeddings from deep learning and Siamese networks. Finally, an inter-
esting branch of work revolves around teaching CNNs to satisfy triplet ques-
tions as part of the overall pipeline [69, 73]. One method based on this approach
currently holds the state-of-the-art accuracy on the LFW face verification chal-
lenge [61]. Methods like this are very appealing if one wishes to build a classi-
tier. Other methods [25] train Siamese networks on pairwise distance matrices
to output the embedding directly. Though our work does use deep learning as

part of our pipeline, deep learning is not necessary for our approach.
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3.3 “SNE-and-Crowd-Kernel” (SNaCK) embeddings

Our hybrid embedding algorithm, SNE-and-Crowd-Kernel (SNaCK), jointly op-
timizes the objective functions of two different low-dimensional embedding al-
gorithms.! The first algorithm, t-SNE (t-Distributed Stochastic Neighbor Embed-
ding [65]), uses a distance matrix to construct a low-dimensional embedding. Its
goal is to ensure that objects which are close in the original high-dimensional
space are also close in the low-dimensional output without constraining points
that are far in the original space. The second method, t-STE (Stochastic Triplet
Embedding [66]), allows experts to supply triplet constraints that draw from their
domain knowledge and task-specific hints. We will show that this surprisingly
simple joint optimization can capture the benefits of both objectives. See Fig. 3.2

for an overview.

3.3.1 Formulation

Consider N objects. We wish to produce a d-dimensional embedding ¥ € R¥*?.
Let K € RV be a distance matrix, and let T = {r,...,1y} be a set of triplet
constraints. Each constraint #, = (i, j, k) implies that in the final embedding,
object i should be closer to object j than it is to k, meaning |ly; — y;I* < Ily; —
yill?. According to [65], the loss function for t-SNE can be interpreted as finding
the low-dimensional distribution of points that maximizes the information gain

from the original high-dimensional space.

Dij
Cisne = Z pijlog cﬁ’ (3.1)

i+ Y

!Our code is available on the companion website, http://vision.cornell.edu/se3/
projects/concept-embeddings
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where

exp(—K2/207)

jli = 3.2
P S exp(—K2 /20%) (32)
1
Dij = ﬁ(pjli + pij) (3.3)
1 L=y 23\—1
(1 +ly; = y,I") (3.4)

qij =
/ D1+ lye = yil?)™!

and o; is chosen to satisfy certain perplexity constraints.

The loss function for t-STE, given in [66], can be interpreted as the joint prob-

ability of independently satisfying all triplet constraints. It is defined as

CisTE = Z lngEiZ]g, (35)

(i,J.k)eT

where

l+a

(1 + llyi—; 12 )‘T

tSTE _ ¢

p . =
(0 llyi—yil2 \~
=

(3.6)

? + (1 + W)_%ﬁ
Interestingly, when @ = 1 (as suggested in [66] for two-dimensional visualiza-
tions), C,s7¢ becomes a special case of the cost function Cck, from [63] for certain
parameter choices. We explore this relationship in the supplementary material.

Because they are equivalent, we use Cs7g in our cost function, defined as
Csnack = A-Ciste + (1 =) - Cisne (3.7)

To optimize this cost, we use gradient descent on ﬂcsa#. Our implementa-
tion derives from the t-SNE implementation in scikit-learn, so we inherit
their optimization strategy. In particular, we use t-SNE’s early exaggeration [65]

heuristic for 100 iterations and then continue until the 300th iteration.

The A parameter specifies the relative contribution of the machine-computed

kernel and the human-provided triplet constraints on the final embedding. For
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each experiment, we pick A up front such that the norm of 2S£ is approximately

equal to Z£2£ in cross validation.

3.3.2 SNaCK example: MNIST

To briefly illustrate why this formulation is better than t-STE or t-SNE alone,
Fig. 3.3 shows a toy example on MNIST data. In this example, suppose the ex-
pert wishes to capture the concept of primality by partitioning the dataset into
prime numbers {2, 3,5, 7}, composite numbers {4, 6, 8,9} and {0, 1}. Also, for the
purpose of this simple example, assume that rather than labeling the digits di-
rectly, the expert compares images based on concept similarity, i.e., primes are
more similar to primes than to other images. By running t-SNE on flattened
pixel intensities, Fig. 3.3 (A) illustrates that the embedding does a reasonable
job of clustering numbers by their label but clearly cannot understand primality
because this concept is not apparent from visual appearance. To compensate,
we sample triplet constraints of the form (i, j, k) where i and j share the same
concept and k does not. However, we only sample 1,000 constraints for these
2,000 images. t-STE (B) attempts to discover the differences between the num-
bers in a “blind” fashion, but since it cannot take advantage of any visual cues,
the underconstrained points are effectively random. If given many more con-
straints, eventually t-STE can only collapse everything into three points for each
of the three abstract concepts. Our SNaCK embedding (C) displays the desired
high-level concept grouping into primes/non-primes/others, and it can capture
the structure of each class. Points with too few constraints are corrected by the

t-SNE loss and the t-STE loss captures the appropriate structure.
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Figure 3.3: A simple MNIST example to illustrate the advantages of SNaCK’s
formulation. Suppose an expert wishes to group MNIST by some property that
is not visually apparent, in this case: prime, composite or {0,1}. (A) shows t-
SNE on 2,000 MNIST digits using flattened pixel intensities. (B) shows t-STE on
1,000 triplets of the form (i, j, k), where i and j share the same concept but k does
not. (C) shows a SNaCK embedding using the same flattened pixel intensities
and the same triplet constraints. The SNaCK embedding is the only one that
captures the intra-class structure from (A) and the desired abstract grouping of
(B). See 3.3.2 for details.

3.4 Experiments

Our MNIST example demonstrates SNaCK'’s utility in a domain where concepts
can be derived from category labels and everything is known a priori. How does
SNaCK perform on domains where a fixed taxonomy or fixed category labels
are not necessarily known up front? To explore this question, we perform a
series of experiments: first, we showcase SNaCK'’s ability to help label a subset
of CUB-200 in a semi-supervised fashion. In this setting, SNaCK learns concepts
that are equivalent to category labels and outperforms other semi-supervised
learning algorithms. Second, our experiments on a dataset of 10,000 unlabeled
food images demonstrate SNaCK’s ability to capture the concept of food taste
using crowdsourcing. We evaluate the embedding’s generalization error on a
held-out set of crowdsourced triplet constraints. Finally, we showcase SNaCK’s

ability to embed a set of pictographic characters, showing how an expert can
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interactively explore and refine the structure of an embedding where no prior

knowledge is available.

3.4.1 Incrementally labeling CUB-200-2011

In this scenario, we show how SNaCK embeddings can help experts label a new
dataset. Suppose an expert has a large dataset with category annotations and an
unlabeled smaller set containing new classes similar to those they already know.
The expert wishes to use their extensive preexisting knowledge to quickly label
the new set with a minimum amount of human effort. Our goal is to show that
SNaCK allows the expert to collect high-quality labels more quickly than other
methods. Here, the “concepts” we learn are equivalent to category labels. These

experiments are inspired by [41]. See Fig. 3.4.

Dataset: CUB-200

Evaluate
tur K-Means )
Expert il w clustering

Labels  Triplet constraints

Figure 3.4: Experiment overview on CUB-200. See text for details.

Dataset. For this task, we use the “Caltech-UCSD Birds 200-2011” (CUB-
200) dataset [67]. We assume the expert has access to all images and labels of
186 classes in the dataset (to train a machine kernel) and wishes to quickly label
a testing set of 14 classes of woodpeckers and vireos. This subset contains 776
images and was defined in [19]. We only use profile-view bird images where
a single eye and the beak is visible. Images are rotated, scaled, and possibly

flipped so the eye is on the left side of the image and the beak is on the right side;
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part locations are collected using crowdsourcing. The image is then cropped to

the head. This is the same normalization strategy as [10].

Automatic similarity kernel. To generate K, we fine-tune a CNN to a clas-
sification task on all images in the 186 known classes. This allows the expert
to leverage their extensive pre-existing dataset to speed up label collection for
the novel classes. Our network is a variation of the “Network-in-Network”
model [42], which takes cropped normalized bird heads as input and outputs
a 186-dimensional classification result. We started from the pre-trained Ima-
geNet model in the Caffe model zoo [32] and fine-tuned the network for 20,000
iterations on an Amazon EC2 GPU instance. To do this, we replaced the last
layer with a 186-class output and reduced the learning rate for the other lay-
ers to a tenth of the previous value.” Finally, K" is the Euclidean distance
between features in the final layer before softmax. To evaluate the importance
of specialized kernels, we also compare this K“*" kernel to Euclidean distances
between pre-trained GoogLeNet [62] features, and Euclidean distance between

HOG features.

Expert constraints. To generate triplet constraints in a semi-supervised fash-
ion, we reveal the labels for n images of the dataset and sample all triplets
between these images that satisfy same/different label constraints to generate
T, =1{G, jk) | t; = {; # {, max(i, k) < n}. This allows us to vary the amount
of expert effort required to label the novel images. Note that in this test, our
concepts to learn are equivalent to class labels, so all of our sampled constraints
are derived from ground truth. Our food experiments, described in the next sec-

tion, will demonstrate SNaCK'’s ability to learn more abstract concepts captured

2When trained using the standard training/testing protocol on all of CUB-200, this kind of
model achieves 74.91% classification accuracy, which is comparable to the state-of-the-art [10].
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from subjective human judgments.

Comparisons and metrics. To perform labeling with SNaCK, we generate an
embedding of all 776 images and use KMeans to find clusters. To evaluate, we
assign all points within each discovered cluster to their most common ground
truth label and calculate the accuracy of this assignment. See Fig. 3.6 for exam-
ple embeddings varying the number of expert label annotations. We compare
against other semi-supervised learning and constrained clustering systems: La-
bel Propagation [5], the multiclass version of the Constrained Spectral Clustering
KMeans (CSPKmeans) method described in [70], and Metric Pairwise-Constrained

KNV and the n revealed la-

KMeans (MPCKmeans) [6]. Label propagation uses
bels. The constrained clustering systems use K“¥" and pairwise “Must-Link”
and “Cannot-Link” constraints as input, so we reveal n image labels and sample
all possible pairwise constraints between them. As baselines, we calculate CNN
features and try to cluster them with KMeans and spectral clustering, which
do not benefit from extra human effort. Finally, we also compare against the

cluster results of using K-Means on a t-STE embedding from the same triplet

constraints used by SNaCK.

Results are shown in Fig. 3.5. SNaCK outperforms all other algorithms, but
label propagation and MPCKMeans also perform well. CSPKmeans is eventu-
ally outpaced by naively asking the expert for image labels, perhaps because it
was designed for the two-class setting rather than our 14-class case. These ex-
periments show that t-STE benefits from an automatic machine kernel (compare
SNaCK to t-STE), but we can improve the machine kernel with a small number

of expert annotations (compare KMeans or Spectral Clustering to SNaCK).

Using a kernel that captures bird similarity well is particularly important for
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Figure 3.6: Embedding examples on CUB-200 Woodpeckers and Vireos, show-
ing the “SNaCK” method with (left-to-right) 10, 50, and 200 expert label annota-
tions. Colors indicate ground truth labels. As the number of expert annotations
increases, clusters within the SNaCK embedding become more consistent.
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this task. All of the algorithms which use K“*V generally outperform SNaCK
when using a pre-trained GoogLeNet kernel. HOG features, which use no learn-
ing, are only slightly better than naive labeling. Finally, t-STE cannot use any

visual kernel, so it can only consider the images the expert already revealed.

Sometimes the machine kernel disagrees with the expert hints. This may
happen for interesting reasons, such as mistakes in the training data. For exam-
ple, Figure 3.1 shows an instance of a Red-headed Woodpecker that was moved
into a cluster containing many Pileated Woodpeckers. Even though the human
constraints encourage this sample to lie near similarly labeled examples, this
individual looks overwhelmingly similar to a Pileated Woodpecker, so the t-
SNE loss overpowered the t-STE constraints. If the embedding is colored with
ground truth labels, this mistake shows up as a single differently-colored point

in the expected cluster, which is immediately apparent to an expert.

Discovering labels for semi-supervised classifiers

Does better incremental labeling translate into increased classification perfor-
mance? In this scenario, we extend our previous experiment: we use SNaCK
to discover labels for a training set and measure the accuracy of a simple SVM
classifier on a testing set. Our goal is to decide whether just letting an expert re-
veal n labels and training on this smaller set is better than revealing n labels and
using SNaCK to discover the rest. Will a classifier trained on many noisy, dis-
covered labels perform differently than a classifier trained on a smaller, perfect

training set?

Dataset. This task uses the same set of 14 woodpeckers and vireos from
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CUB-200 as before, but the procedure is different. We split our set into 396 train-
ing and 380 testing images using the same train/test split as CUB-200. We then
discover labels on the training images using varying numbers of expert annota-
tions and train a linear SVM classifier on all CNN features using the discovered
labels. Finally, we report accuracy on the 380 testing images. The idea is that the
quality of the discovered labels influences the accuracy of the classifier: a poor
labeling method will cause the classifier to be trained on incorrect labels. Be-
cause all methods use the same type of classifier, we are evaluating the quality

of our discovered labels, not the classifier itself.

Comparisons. As a baseline, we compare SVM classifiers trained on SNaCK-
discovered labels to an SVM classifier trained on a smaller, better set of n correct
labels provided by expert ground truth. This corresponds to the “Naive Hu-
man Sampling” method in Fig. 3.5. We also compare baselines where the SVM
training set labels are discovered using KMeans, spectral clustering, and label

propagation.

Results are shown in Fig. 3.7. Classifiers trained on noisy labels discovered
from SNaCK embeddings significantly outperform classifiers that are trained on
smaller training sets, even though many of SNaCK’s labels are incorrect. This
is particularly true for fewer than 50 annotations. Accuracy of SNaCK, Label
Propagation, and naive label sampling saturates at about 85%, which is likely

due to the linear SVM’s limited generalization ability.

Interestingly, classification accuracy of labels discovered with MPCKMeans
does not monotonically improve with more expert annotations. This surprises
us, but Fig. 3.5 does show that MPCKmeans saturates to a smaller value in our

semi-supervised labeling experiments, indicating that it cannot perfectly satisfy
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Sec. 3.4.1 for details.

(and thus does not benefit from) additional constraints.

Using SNaCK, an expert can build a classifier that achieves 78.8% classifica-
tion accuracy by labeling 50 images (12.6% of the dataset). A standard SVM that
achieves this level of accuracy requires a training set of 95 perfectly labeled im-
ages, showing that SNaCK can cut down the expert’s work load to build training

sets for classifiers.

3.4.2 Experiments on Yummly-10k

In this scenario, we use SNaCK to generate embeddings of food dishes. The
goal is to create a concept embedding that captures the concept of taste. Two

foods should be close in this embedding if they taste similar, according to sub-
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Figure 3.8: Left: Example SNaCK embedding on Yummly-10k, combining ex-
pertise from Kernel 2 (CNN features) and 950,000 crowdsourced triplet con-
straints. Middle/right: Close-ups of the embedding. On a large scale, SNaCK
groups major food kinds together, such as desserts, salad, and main courses.
On a small scale, each food closely resembles the taste of its neighbors. See the
supplementary material version for larger versions of this figure.

jective human judgments. This is different from the earlier bird experiments
because we can no longer rely on labels or taxonomies to help refine the embed-
ding; all expert hints must come directly from unquantified human perception

annotations. See Fig. 3.9.

eataset: Yummly-10k
- Kernel: CNN / word2vec Evaluate embedding
- emetc e - - Pt nbeid
MTurk \Trlplet Constraints A \Held-out Constraints >3

Figure 3.9: Experiment Overview for Yummly-10k. See text for details.

Dataset. For this experiment, we used 10,000 food images from the Yummly
recipe web site, dubbed Yummly-10k. This data contains a variety of meals, ap-
petizers, and snacks from different cultures and styles. We filtered the images by
removing all images shorter or thinner than 300 pixels and removed all drinks
and non-edibles. As metadata, Yummly includes weak ingredients lists and the

title of the dish, but it does not include food labels.

Automatic similarity kernels. SNaCK is not specific to any specific kernel
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representation, so we compare two kinds of similarity measures. Food Kernel 1
is a semantic similarity measure of the best matching between two foods’ ingre-
dient lists, and Food Kernel 2 is a visual similarity measure based on a convolu-
tional neural network. To create K;f;"rdzvec (Food Kernel 1), let I; and I, be food i
and j’s ingredients lists from Yummly. Let w(-) be an ingredient’s word2vec[48]
representation, scaled to unit norm, and let cost matrix C(a, b) = w(a) - w(b) for
a € I,b € I;. Finally, let f : I; = I; be the maximum-weight assighment between
the two ingredient lists. Then, szjordzvec = — Yue1, C(a, f(a)). This way, Food Kernel

1 determines foods that share many common ingredients are more similar than

foods that have many dissimilar ingredients.

To build Food Kernel 2, we fine-tuned a CNN to predict a food label. Be-
cause Yummly-10k does not have any labels, we train on the Food-101 dataset
from [9]. Similarly to our earlier bird experiments, our network is a variation
of the “Network-in-Network” model trained to classify 101 different foods. It
was trained for 20,000 iterations on an Amazon EC2 GPU instance by replacing
the last layer and reducing the learning rate. The final kernel is defined as the
Euclidean distance between these CNN features. Our CNN model provides an
excellent kernel to start from: when trained via the standard Food-101 protocol,
this model achieves rank 1 classification accuracy of 73.5%. The previous best
accuracy on this dataset is 56.40% from [9]; the best non-CNN is 50.76%. Of
course, building a good classification model is not our focus, but we report this
accuracy to show that the automatic kernel we use is effective at distinguishing

different foods.

Expert annotation. Because we want our embedding to properly capture the

concept of food taste, we collect our expert annotations directly from humans on
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Figure 3.10: Increasing the number of crowdsourced triplet constraints allows
all methods to improve the embedding quality, measured as the fraction of un-
satisfied held-out triplet constraints (“triplet generalization error”). However,
SNaCK-based methods converge much more quickly than t-STE and require
less expert annotation to get a better result.

Amazon Mechanical Turk using the crowdsourcing interface of [71]. For each
screen, we show a reference food image i and a grid of 12 food images. The
human is asked to “Please select 4 food images that taste similar to the reference
food i.” We then generate all possible triplet constraints {(i, j,k),j € S,k ¢ S},
where § is the user’s selection. Each HIT has 10 screens and yields 320 triplet

constraints. In total, we collected 958,400 triplet constraints.?

Experiment design. There are no labels associated with taste in our Yummly
data, so we must use other metrics to evaluate the quality of our perceptual
embeddings. To do this, we adopt the “Triplet Generalization Error” metric
common to previous work [28, 79, 66, 71]. We split all triplet constraints into
training and testing sets and generate embeddings with varying numbers of

training triplet constraints. Triplet generalization error is defined as the fraction

3Triplets are available from the companion website, http://vision.cornell.edu/
se3/projects/concept-embeddings
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of violated testing triplet constraints, which measures the embedding’s ability
to generalize to constraints the expert did not specify. We compare our two

SNaCK kernels to t-STE.

Results are shown in Fig. 3.10 and an example embedding is shown in
Fig. 3.8. As more triplet constraint annotations become available, all methods
produce embeddings of higher quality. SNaCK with Kernel 2 eventually con-
verges to 28% while t-STE reaches 33% error. Note that t-STE starts from ran-
dom chance (50%) because it starts with no information, while SNaCK-based
methods initially start with lower error because the Stochastic Neighbor loss on
the automatic kernel encourages an initial embedding that contains some fine-
grained information. Kernel 2 consistently outperforms Kernel 1, indicating
that in this experiment, deep-learned visual features may be a better indication
of food taste than the similarity of food ingredient lists. However, even the
“weaker” semantic ingredient information provides a much better initial kernel

than nothing at all.

3.4.3 Interactively discovering the structure of pictographic

character symbols

In this section we describe possible tools for exploring unlabeled data. We chose
to analyze a set of 887 pictographic characters, colloquially known as Emoji.
Using CNN features pre-trained on ImageNet, we can create an embedding that
does a good job of grouping visually similar Emoji together. However, if the
goal is to capture the concept of emotion within the set of Emoji, then similarity

of visual features alone may be inadequate. For example, in Fig. 3.11.A, a group
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Figure 3.11: An example GUI used to interactively explore and refine concept
embeddings. (A) shows a t-SNE embedding of Emoji using pre-trained Ima-
geNet features. The user selects a set of images (B) and indicates which ones
share the same emotion (C). For example, the user selected the smiling frog
because it has a similar emotion to the top left image. The updated SNaCK em-
bedding (D) moves smiling emoji away from unrelated images, regardless of
the artistic style of the faces. Additionally one of the highlighted fearful faces,
separate from the main cluster of faces in (A) has moved to be near faces with a
similar expression without collecting triplets between them.

of yellow faces are clustered at the upper right, but this group contains different

emotions and does not contain similar images in other artistic styles.

To interactively refine the embedding, the expert selects a reference Emoji
and drags a box around several images. The expert then indicates which of these

images share the same emotion as the reference. In the example in Fig. 3.11,
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a smiling Emoji was selected and compared to all the Emoji in the green box
(Fig. 3.11.B). After two bounding box selections and a few minutes of work, we
are able to collect 20,000 triplets and separate many of the smiling Emoji from
the rest of the embedding. From here, we could further inspect these Emoji and

separate the emotion of laughing from smiling.

As mentioned in the MNIST experiments, the SNaCK embeddings are capa-
ble of taking advantage of visual cues when triplet information is not available.
An example of this can be seen in Fig. 3.11.D. A fearful face with glasses is
moved from the left side of embedding to be near other faces with similar ex-
pressions. SNaCK was able to do this without requiring triplets to be collected
between these faces. These examples give a brief illustration of how SNaCK can

be useful for examining unlabeled data.

3.5 Conclusion

Our SNaCK algorithm can learn concept embeddings by combining human
expertise with machine similarity. We showed that SNaCK can help experts
quickly label new sets of woodpeckers and vireos, build training sets for classi-
fiers in a semi-supervised fashion, and capture the perceptual structure of food
taste. We also presented a snapshot of a tool that can help experts interactively
explore and refine a set of pictographic characters. In the future, we will pur-
sue intelligent sampling for active learning of embeddings, and will extend our

system to explore large video datasets.
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CHAPTER 4
BAM! THE BEHANCE ARTISTIC MEDIA DATASET FOR RECOGNITION
BEYOND PHOTOGRAPHY

“Art is an effort to create, beside the real world, a more humane world.” —

André Maurois

Recent advances in Computer Vision have yielded accuracy rivaling that of
humans on a variety of object recognition tasks. Most work in this space is
focused on understanding photographic imagery of everyday scenes. For exam-
ple, the widely-used COCO dataset [43] was created by “gathering images of
complex everyday scenes containing common objects in their natural context.”
Outside of everyday photography, there exists a diverse, relatively unexplored
space of artistic imagery, offering depictions of the world as reinterpreted through
human artwork. Besides being culturally valuable, artwork spans broad styles
that are not found in everyday photography and thus are not available to cur-
rent machine vision systems. For example, current object classifiers trained on
ImageNet and Pascal VOC are frequently unable to recognize objects when they
are depicted in artistic media (Fig. 4.1). Modeling artistic imagery can increase
the generality of computer vision models by pushing beyond the limitations of

photographic datasets.

In this work, we create a large-scale artistic style dataset from Behance,
a website containing millions of portfolios from professional and commercial
artists. Content on Behance spans several industries and fields, ranging from
creative direction to fine art to technical diagrams to graffiti to concept design.

Behance does not aim to be a historical archive of classic art; rather, we start
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Figure 4.1: State of the art object detectors such as SSD trained on Pascal VOC
can reliably detect objects in everyday photographs (top row), but do not gen-
eralize to other kinds of artistic media (see scores under each image). In this
work, we create a large-scale artistic dataset spanning a breadth of styles, me-
dia, and emotions. We can use this dataset to improve the generality of object
classifiers—our object classifier’s scores are above 0.95 for all these images.

from Behance because it represents a broad cross-section of contemporary art

and design.

Our overall goal is to create a dataset that can teach machines to understand
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and categorize artistic images in ways that are valuable to humans. This is im-
portant because existing artistic datasets are too small or are focused on clas-
sical artistic styles, ignoring the breadth of contemporary digital artwork. To
solidify the scope of the problem, we choose to explore three different facets
of high-level image categorization: object categories, artistic media, and emo-
tions. These artistic facets are attractive for several reasons: they are readily
understood by non-experts, they can describe a broad range of contemporary

artwork, and they are not apparent from current photographic datasets.

We keep the following goals in mind when deciding which attributes to an-
notate. For object categories, we wish to annotate objects that may be drawn
in many different visual styles, collecting fewer visually distinct categories but
increasing the density (instances per category) and breadth of representation.
ImageNet and COCO, for example, contain rich fine-grained object annotations,
but these objects only appear in everyday photos and thus only cover a narrow
range of artistic representation. For media attributes, we wish to annotate pic-
tures rendered with all kinds of professional media: pencil sketches, computer-
aided vector illustration, watercolor, and so on. Finally, emotion is an important

categorization facet that is relatively unexplored by current approaches.

There are several challenges, including annotating millions of images in a
scalable way, defining a categorization vocabulary that represents the style and
content of Behance, and integrating this resource into existing computer vision

systems.

Qur contributions are threefold:

o A large-scale dataset, the Behance-Media Dataset, containing almost 60
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Size Scope Annotations

A-SUN [53] 0.014m Photos of scenes Objects, context
Behance-2M (Private) [17] 1.9m Contemporary artwork User/View behavior
Recognizing Image Style [34] 0.16m  Photos, paintings Art genre, photo techniques
AVA [51] 0.25m  Photos Aesthetics, content, style
Visual sentiment ontology [8] 0.31m  Photos, videos Adj/Noun pairs
Openlmages [37] 9.2m Photos Content labels
Behance-Media 60m Contemporary artwork Emotion, Media, Objects

Table 4.1: A comparison of several related datasets. Our Behance-Media dataset
is much larger than the others and includes a broad range of contemporary art-
work.
million images, a subset of which will be released upon publication. We
also create an expert-defined vocabulary of binary artistic attributes that

spans the broad spectrum of artistic styles and content represented in Be-

hance.

e An iterative label bootstrapping algorithm that allows us to annotate this
dataset at low cost while satisfying quality guarantees by focusing the

crowd’s attention on the most worthwhile images to label.

e An analysis of the dataset, showing how it may be used to improve gener-
ality of existing computer vision systems. We also use our dataset to teach

machines to recognize images with different styles and emotions.

We believe this dataset will provide a starting foundation for researchers who

wish to build systems that better understand artwork.

4.1 Related Work

Attributes and other mid-level representations have a long and rich history in
vision. Two seminal works that introduce attributes are the “semantic multi-
nomials” of Rasiwasia and Vasconcelos [56], which lift images into a semantic

space useful for performing visual searches, and the work by Farhadi et al. [15],
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which use human-describable attributes to perform zero-shot learning of new
objects. Attributes have been applied to face recognition via the work of Ku-
mar et al. [39] later extended by Scheirer et al. [60] and scene understanding by

Patterson et al. [53], Redi et al. [57], and others.

Attributes have also been applied to aesthetics and other artistic qualities,
usually with a focus on photography. For instance, Obrador et al. [52], Dhar
et al. [16], and Murray et al. [51] collect descriptive attributes such as interest-
ingness, symmetry, light exposure, and depth of field. Work by Peng et al. [54]
attempts to study regions of photographs that induce a certain emotion in a
viewer. Other work such as Jou et al. [33] and Borth ef al. [8] use emotions to

build ontologies of Adjective/Noun pairs to describe images.

Others describe image style in terms of low-level feature correlations as in
work done by Gatys et al. [22], Lin et al. [44], and others. The application stud-
ied in Gatys” work is transferring texture from one image to another, but we
argue there is more to artistic style than low-level texture transfer. We are more

concerned about high-level image categorization.

Ours is not the only dataset focused on artwork. We compare related
artistic datasets in Tab. 4.1. Most are focused exclusively on everyday pho-
tographs [51, 53, 8], but some [34] include classical paintings. For example,
Crowley and Zisserman [17] studied how VOC categories appear in paintings.
Likewise, Ginosar et al. [23] discuss person detection in cubist art. The work
of Fang et al. [17] also studies Behance imagery, but does not collect descrip-
tive attributes. Recently, Google released a large-scale dataset called “Open Im-
ages” [37]. As of this writing, there is no report explaining how this dataset was

collected. Open Images contains some media-related labels including “comics”,
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“watercolor paint”, “graffiti”, etc. but it is unclear how the quality of the label-
ing was evaluated and each of these labels contain less than 400 human-verified
images. Further, there are no labels relating to different emotions. Open Images
contains some artistic imagery, but that is not its focus. To our knowledge, our
work is the first work seeking to release a large-scale dataset of a broad range of

contemporary artwork with emotion, media, and content annotations.

Our work is most similar in spirit to Karayev et al. [34], which studies pho-
tographic image style. They collect annotations for photographic techniques,
composition, genre, and mood on Flickr images, as well as a set of classical
painting genres on Wikipaintings. Our focus is on non-photorealistic contem-
porary art, which is also covered by Fang et al. [17]. Fang et al.’s work trains a
style prediction network to predict image “pseudoclasses,” which are clusters
of images that encompass consistent styles according to user behavior. Our ap-
proach is explicit: we directly annotate semantically meaningful attributes from

that feature space.

Finally, several works [78, 38, 13] show how to use deep learning to am-
plify human effort. The design of our crowdsourced dataset collection process
is loosely based on the LSUN dataset annotation pipeline [78], which builds a
very large-scale object detection dataset using a combination of deep learning

and crowdsourcing.

4.2 The Behance Media Dataset

Our dataset is built from “Behance,” a portfolio website for professional and

commercial artists. Behance contains over ten million projects and sixty million
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Figure 4.2: Top: Sampling of images within projects with the “Cat” tag. Projects
with the “Cat” tag may contain other animals (1), title cards (3,5), or unrelated
pictures (5,6). Bottom: Top classifications from a classifier trained to distinguish
the “Cat” tag. Images are more related, but this tends to learn many small ani-
mals. The precision of cats in the top 100-scoring images is only 36%.

images. Images on Behance are grouped into Projects, the fundamental unit
of categorization. Each Project is associated with metadata, including a title,
optional description, several user-supplied tags, and up to three annotations

specifying the field of the Project.

Artwork on Behance spans many fields, such as sculpture, painting, photog-
raphy, graphic design, graffiti, illustration, and advertising. Graphic design and
advertising make up roughly one third of Behance. Photography, drawings, and
illustrations make up roughly another third. This artwork is posted by profes-
sional artists to show off samples of their best work. We encourage the reader
to visit http://behance.net to get a sense of the diversity and quality of

imagery on this site. Example images from Behance are shown in Fig. 4.4.

Selecting attribute categories. In this work, we choose to annotate our own
artistic binary attributes. Attribute names are rendered in sans serif font. Our
attributes capture three categorization facets:

e Emotion attributes: We label images that are likely to make the viewer
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feel calm/peaceful, happy/cheerful, sad/gloomy, and scary/fearful.

e Media attributes: We label images created in 3D computer graphics,

comics, oil painting, pen ink, pencil sketches, vector art, and watercolor.

o Entry-level object category attributes: We label images containing bicy-

cles, birds, buildings, cars, cats, dogs, flowers, people, and trees.

We chose these attributes as follows: The four emotion attributes are seen
on Plutchik’s Wheel of Emotions [55], a well-accepted model for emotions from
the psychological literature. This model was also used in [33]. From this model,
we chose the emotions that are likely to be visually distinctive. The seven me-
dia attributes were chosen on the expert advice of a resident artist to roughly
correspond with the genres of artwork available in Behance that are easy to vi-
sually distinguish. Our goal is to strike a balance between distinctive media
while covering the broad range available in Behance. For instance, oil paint and
acrylic are considered to be different media by the artistic community, but are
very hard for the average crowd worker to distinguish visually. The content
attributes represent entry-level object categories and were chosen to have some
overlap with Pascal VOC while being representative of Behance content. We fo-
cus on entry-level categories because these categories are likely to be rendered

in a broad range of styles throughout Behance.

Although this work is only concerned with a small set of labels (arguably
a proof-of-concept), the dataset we release could itself be the basis for a real

PASCAL/COCO-sized labeling effort which requires consortium-level funding.

Tags are noisy. Behance contains user-supplied tags, and one may won-
der whether it is feasible to train attribute classifiers directly from these noisy

tags alone. This idea was previously studied in Izadinia ef al. [30] and Misra et
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al. [50]. However, unlike that work, we cannot create our dataset from tags alone
for two reasons. First, not all of our attributes have corresponding tags. Second,
tags are applied to each project, not each image. For example, even though a
project called “Animal sketches 2012” may have the “Dog” tag, we do not know
which image that tag should apply to. Training on tags alone is too noisy and
reduces the final classifier precision. As a toy experiment, Fig. 4.2 shows a sam-
pling of images from projects with the “Cat” tag, but many of these images do
not contain cats. A binary classifier trained on this tag only learns to distinguish
different small animals and is not fine-grained enough to find cats. The preci-
sion of cats among the top 100 detections is only about 36%. To increase this

accuracy, we must rely on human expertise to collect labels.

421 Crowdsourcing

Our dataset requires some level of human expertise to label, but it is too costly
to collect labels for all images. To address this issue, we use a hybrid human-
in-the-loop strategy to incrementally learn a binary classifier for each attribute.
At each step, humans label the most informative samples in the dataset. The
resulting labels are added to each classifier’s training set to improve its dis-
crimination. The classifier then ranks more images, and the most informative
images are sent to the crowd for the next iteration. After four iterations, the fi-
nal classifier re-scores the entire dataset and images that surpass a certain score
threshold are assumed to be positive. This final threshold is chosen to meet cer-
tain precision and recall targets on a held-out validation set. This entire process
is repeated for each attribute we wish to collect. Our hybrid annotation strategy

is loosely based on the LSUN dataset annotation pipeline described in [78]. An
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Figure 4.3: A diagram of our crowdsourcing pipeline. First, we train a set of
classifiers on all labels collected so far. We then use this classifier to rank a
random sample of images. High-scoring images are sent back to the crowd,
and the resulting labels are added to the training and validation set. After four
iterations, the validation set is used to select positive and negative thresholds
with certain precision and recall targets. Images meeting these thresholds are
added to the automatic label set.

overview of this process is shown in Fig. 4.3.

The human crowdsourcing task. The heart of our human-in-the-loop sys-
tem is the actual human annotation task. We collect annotations for each at-
tribute independently. To do this, we rely on Amazon Mechanical Turk, a
crowdsourced marketplace. Crowd workers (“Turkers”) complete Human In-
telligence Tasks for a small cash payment. In each HIT for a given attribute, we
show the Turker 10 handpicked positive/negative example images and collect
50 binary image annotations. Turkers indicate whether each image has the at-
tribute of interest. Each HIT only collects labels for a single attribute at a time

to avoid confusion. For quality control, we show each image to two separate
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Turkers and only use answers where both Turkers agree.

We also collect sparse text annotations for a subset of these images. Every
10 images, we present an annotation recently provided by the Turker and ask
for a brief 3-word caption to justify their choice. For emotion attributes, we ask
why the image might or might not make an average Turker feel that emotion;
for media attributes, we ask how the Turker knows the image was or was not
drawn with that medium; for content attributes, we merely ask what the object
of interest looks like. The Turker must write at least three words before con-
tinuing, but captions are not checked for grammar or coherence. This has the
effect of encouraging annotators to carefully consider and justify their choices.
Feedback from the Turkers indicate that they found this extra captioning task to
be annoying and to slow them down; however, it seemed to greatly increase the

quality of the provided attribute labels based on manual inspection of results.

These annotations also provide useful clues about what qualities workers
use to describe style. The words that maximize TF/IDF scores among positive
annotations are informative: workers tend to use nouns when describing object
categories (such as “bouquet”, “rose”, “petal”, “vase” for Flower) and visual ad-
jectives when describing media and emotion (such as “translucent”, “frayed”,
“blotchy”, “bleeding”, “overlap” for Watercolor). The supplementary material

contains more examples of informative words. These annotations will be re-

leased alongside the final dataset.

It is always important to balance the trade-off between squeezing high-
quality work out of annotators while being respectful of their effort and abilities.
The subjectivity of our task makes this trade-off harder to manage. Beyond oc-

casionally asking Turkers for justification, we did not feel a need to force them
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to surpass accuracy thresholds on “gold standard” tasks. We did not reject any
HIT responses and annotators were always paid for their time, opting to instead
ignore low-quality responses without consensus. From manual inspection, we
found that with adequate examples, our annotators generally understood the

task and answered to the best of their abilities.

Iterative learning. Starting from the initial label set, the dataset is enlarged
by an iterative process that alternates between training a classifier on the cur-
rent label set, applying it to unlabeled images, and sending unconfident images
back to the crowd for more labeling. We start the process by constructing a
tentative training set. For media and content attributes, we sample images with
handpicked tags as positives and random images as negatives. For example, the
Dog attribute is seeded by a classifier trained on positive images from Behance
tagged with “Dog”. The first classifier is trained on this tentative training set
with the expectation that this classifier’s guesses will be quickly refined by the
crowd. For emotion images, there are no suitable tags, so we start by collecting
a training set from the crowd, randomly sampled from photography and fine

art fields.

On each iteration, we train a deep learning classifier using 90% of the total
collected crowd labels. The last 9% are always held out for validation. To select
the next round of images to show to the crowd, we define an “interestingness”
score threshold on the validation set such that the precision of relevant valida-
tion images above this threshold is 50%. The crowd labels 5,000 “interesting”
images above this threshold. This way, the crowd always sees an even split of
likely-positive and likely-negative images. The resulting crowd labels are added

to the training set for the next iteration.

58



After four iterations, we arrive at a final classifier that has good discrimina-
tion performance on this attribute. We score the entire dataset with this classifier
and use thresholds to select the final set of positives and negatives. The positive
score threshold is chosen such that the precision of higher-scoring validation
images is 90%, and the negative threshold is chosen such that the recall of vali-
dation images above this threshold is 95%. In this way, we can ensure that our

final labeling meets strict quality guarantees.

It is important to note that the resulting size of the dataset is determined
solely by the number of relevant images in Behance, our desired quality guar-
antees, and the accuracy of the final classifier. A better attribute classifier can
add more images to the positive set while maintaining the precision threshold.
If we need more positive data for an attribute, we can sacrifice precision for a

larger and noisier positive set.

Classifier. For content attributes, our classifier is a fine-tuned 50-layer
ResNet [26] originally trained on ImageNet. For emotion and media attributes,
we found it better to start from StyleNet [17]. This model is a GoogLeNet [62],
fine-tuned on a style prediction task inferred from user behavior. Each network
is modified to use binary class-entropy loss to output a single attribute score.
To avoid overfitting, we only fine-tune for three epochs on each iteration. See

Fig. 4.4 for examples of Behance images.

4.2.2 Resulting dataset statistics

Our final dataset includes positive and negative examples for 20 attributes. The

median number of positive images across each attribute is 54,000, and the me-
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Figure 4.4: Example images from Behance Artistic Media. We encourage the
reader to zoom in for more detail.

dian number of negative images is 8.7 million. The “People” attribute has the

most positive images (1.74 million). Humans are commonly featured as art sub-
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jects, so this is not surprising. The attribute with the least positives is “Cat”
with 19,244 images. We suspect this is because our labeler cannot easily distin-
guish cats from other cat-like renditions. As shown in supplementary material,
cats on Behance are commonly rendered in many different styles with very high

intra-class variation. Statistics for all attributes are shown in Fig. 4.5.

Deep learning amplifies the effort of our human annotators by a factor of 505
averaged across all attributes. Here, “amplification” is defined as the number
of automatically inferred labels divided by the number of images seen by the
crowd. When labeling a dataset as large and diverse as Behance, automatic sys-
tems can quickly throw away easy negatives, focusing the crowd’s attention on
potentially relevant images. This means most of the amplification effect comes
from negative images. If we alternatively define amplification as the number of
automatically-labeled positive images divided by the number of crowd-labeled

positive images, the average amplification factor is 17.4.

4.2.3 Final quality assurance

As a quality check, we tested whether the final labeling set meets our desired
quality target of 90% precision at 95% recall. For each attribute, we show an-
notators 100 images from the final automatically-labeled positive set and 100
images from the final negative set. Images are presented in random order using
the same interface used to collect the dataset. Fig. 4.6 shows worker agreement
on the positive set as a proxy for precision. The mean precision across all at-
tributes is 90.4%, where precision is the number of positive images where at

least one annotator indicates the image should be positive.
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Figure 4.5: Top: Number of positive images in the final set. Bottom: Amount of
amplification for each attribute (number of automatic labels divided by number
of crowd labels)

To measure recall, we examine how many workers found positive images in
the negative set. Across all attributes, at least one worker indicated the image
was negative for 98.9% images in the negative set, surpassing our original recall

target of 95%.

4.3 Experiments

We can use this dataset to teach machine vision systems about high-level image
categorization. First, we explore the representation gap in pre-trained object
detectors, showing that existing systems cannot detect objects rendered across
many different art styles. Training on artistic imagery improves detection per-

formance. Second, we compare different feature extraction strategies on emo-
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Figure 4.6: Final quality assurance: Showing worker agreement of
automatically-labeled positive images in the final dataset.

tion and media attributes. Finally, we use Behance-Media to improve the per-

formance of style classification tasks on other datasets.

4.3.1 Detecting objects in artwork

How well do existing object detectors generalize to artistically-rendered objects?
We expect this task to be difficult because existing object detectors trained on
ImageNet or VOC are only exposed to a very narrow breadth of object represen-

tations. Objects in photographs are constrained by their real-world appearance.

We consider 6 content attributes that correspond to Pascal VOC categories:
Bicycle, Bird, Cars, Cat, Dog, People. We then extract scores for these attributes
using two object detectors trained on VOC: YOLO [58] and SSD [45]. For the
sake of comparison, we use these detectors as binary object classifiers by using
the object of interest’s highest-scoring region from the detector output. We also

compare to ResNet-50 classifiers [26] trained on ImageNet, taking the maximum
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Figure 4.7: PR curves for different VOC object categories comparing our model,
YOLO, SSD, ResNet-50, and fusion of ours and ResNet-50.

dimension of the ImageNet synsets that correspond with the VOC category of

interest. In this way, we can measure how well existing object detectors and

classifiers already find objects in art without extra training. We also compare to

our final attribute classifier trained in Sec. 4.2.1.

We evaluate these methods on 5,000 positives and 5,000 negatives on each

attribute’s human-labeled validation set to avoid potential bias from the auto-
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AP | Ours Yolo SSD  RNb5O0 | Fusion
Bicycle | 0.9703 0.9008 0.9116 0.8702 | 0.9704
People | 0.9103 0.8863 0.8952  —! —

Bird | 0.9400 0.8516 0.8387 0.8768 | 0.9453
Cat | 0.9660 0.8583 0.8620 0.8026 | 0.9501
Cars | 0.9551 0.9140 0.9194 0.8519 | 0.9628
Dog | 0.9272 0.8510 0.8582 0.8818 | 0.9293

Table 4.2: Average precision across different VOC categories using our model,
YOLO, SSD, ResNet-50, and fusion of ours and ResNet-50. ': We do not report
people results because there are relatively few ImageNet people categories.

matic labeler. The results are shown as precision/recall curves in Fig. 4.7 and
AP is shown in Tab. 4.2. Vision systems trained on photography datasets like
VOC (YOLO, SSD) and ImageNet (RN50) perform worse than vision systems
that have seen objects in artwork during training. Indeed, from manual inspec-
tion, most false negatives of these systems involve objects rendered with unique
artistic styles. Specific failure cases are shown in Fig. 4.1. This shows that ex-
isting datasets have a representational gap that can be amended by seeing more

training data.

We can improve performance slightly by fusing ImageNet and Behance
scores together with a simple linear combination. The resulting “Fusion” model
performs slightly better than our own model and ResNet-50 on all but two at-

tributes.

4.3.2 Emotion and media: Which features are best?

Here, we compare the performance of different feature learning strategies on
our dataset’s emotion and style attributes, complementing the content attributes

studied above. Our hypothesis is that features trained on object categories
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should perform better on object attributes and features trained on style predic-
tion tasks should perform better on style attributes. To test this hypothesis, we
extract features from the final linear layer of a pre-trained ResNet-50 model and
features from StyleNet [17]. We then measure the precision and recall of a linear

SVM on held-out human labels for each attribute.

Performance for six attributes is given in Fig. 4.8. For all four emotion at-
tributes, the AP of linear classifiers on StyleNet features is greater than the AP
of linear classifiers on ImageNet-derived features. StyleNet features also have
higher AP than ImageNet-derived features on four out of six media attributes.
However, ImageNet-derived features have higher AP than StyleNet features on

all nine content attributes.

This supports the view that vision systems trained to distinguish object cate-
gories can more easily transfer domain knowledge to distinguishing artistic ob-
jects as well. One might wonder whether information about artistic style would
be more important for this task, but that is not the case; instead, fine-tuning
a network for style prediction tasks [17] makes it more suitable to distinguish
emotion and media attributes at the cost of reducing its object detection perfor-

mance.

4.3.3 Using Behance-Media to improve the performance of ex-

isting models

In this section, we show that automatic labels from Behance-Media can improve

style classification on existing datasets. We evaluate on the three datasets intro-
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duced in [34]: 80,000 images in 20 photographic styles on Flickr, 85,000 images
from the top 25 styles on Wikipaintings, and the 14,000 images with 14 photo-
graphic styles from the hand-labeled set of AVA [51]. For comparison to pre-
vious work [17], we report AVA classification accuracy calculated only on the

12,000 images that have a single style label.

Our joint attribute model (JAM) training works as follows. Each training
sample (x,i,¢) is a tuple of image x, attribute index i, and label ¢ € {-1,1}. It
is not suitable to train this model using ordinary cross entropy because each
attribute is not mutually exclusive. Thus, we must use a loss function with two
properties: each attribute output should be independent of other attributes and
unknown attribute values should not induce any gradient. We lift image x to a
20-dimensional partial attribute vector $ € R, where §,.; = 0 and $;-; = ¢. This

allows us to train using a soft-margin criterion,

1
loss(x.y) = 55 ) 1og(1 + exp(=9iy.). (4.1

Our JAM model is a fine-tuned ResNet-50 model with a linear projection from
1,000 to 20 dimensions. Except for the last layer, they share the same architecture
and are merely trained using different loss functions. We trained our model for
100 epochs, starting with a learning rate of 0.1 and multiplying it by 0.93 every
epoch. The training set includes roughly 2 million images evenly sampled be-
tween attributes and evenly distributed between positive and negative images

drawn from the automatically-labeled images in Behance-Media.

Results are shown on Table 4.3. On all three challenges, our model shows
improved results compared to both the original ResNet-50 and StyleNet. This
shows that Behance imagery is rich and diverse enough to improve style recog-

nition tasks on other datasets. This is particularly interesting because Flickr
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JAM ResNet-50 StyleNet [17]

(ImageNet)
Flickr 0.389 0.376 0.372
Wikipaintings | 0.508 0.505 0.414
AVA 0.615 0.603 0.560

Table 4.3: Performance of our joint model for style detection on other datasets

AVA are both focused on photographic style. Categories in AVA are chosen to
be useful for aesthetic quality prediction tasks. In a sense, we have shown that
a model’s knowledge of emotions and media could potentially transfer to pho-

tographic style and aesthetic prediction.

4.4 Conclusion

Computer vision systems need not be constrained to the domain of photogra-
phy. Here, we show how the rich field of artistic imagery can benefit machine
vision systems. We propose a new dataset, “Behance-Media.” This dataset is de-
rived from Behance, a repository of millions of images posted by professional
and commercial artists, representing a broad snapshot of contemporary art-
work. We collected a rich vocabulary of emotion, media, and content attributes
that are both visually distinctive and representative of the diversity found in Be-
hance. However, though Behance does include tag metadata, we showed that
these tags are too noisy to learn directly. Further, the scale of Behance makes

brute-force crowdsourcing unattractive.

To surmount these issues, we collected labels via a hybrid human-in-the-
loop system that uses deep learning to amplify human annotation effort. This

allows existing machine vision systems to focus crowd attention on the images
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Figure 4.8: Performance of different features on six emotion and media at-
tributes.

that need human expertise. Our annotation pipeline collects labels at a fraction
of the cost of brute force labeling while meeting precision/recall guarantees of

our choosing.

The resulting dataset is useful for several computer vision tasks. We use it to
highlight the representation gap of current object detection systems trained on

photography, showing that Behance captures a wider gamut of representation

69



styles than current sets such as VOC and ImageNet. We also use Behance to im-
prove the performance of style classification tasks on other datasets, showing
that researchers can train on our dataset for a marked improvement in perfor-

mance.

We believe our dataset provides a good foundation for further research into

the unexplored realm of large-scale artistic imagery.

70



CHAPTER 5
CONCLUSION

Overall, our focus was on creating models that have strong intuition with-
out having to rely on densely labeled training data carefully curated by human

experts.

We anticipate several real-world applications of the work presented here.
The embedding methods used in Chapter 2 and Chapter 3 are useful when vi-
sualizing large-scale datasets using expert refinement. For example, an expert
journalist could use SNaCK to embed a large corpus of related news articles us-
ing an automatic article similarity kernel. The expert would then be able to use
hand-tuned constraints to refine the embedding to gain a better understanding
of how news spreads through social media. Alternatively, one could build a
“visual similarity field guide” using the data collected in previous work [65].
This field guide could be used by amateur birders to better understand fami-
lies of similar-looking easily-confused birds, similar to Merlin Bird ID'. Finally,
the large-scale crowdsourcing used in Chapter 4 is an effective way to collect

large-scale image datasets to use worker time more efficiently.

First, Chapter 2 first explored the triplet query as the fundamental unit of
perceptual similarity. Triplet queries capture a small piece of information about
the relationships between similar objects. To turn this into useful inferences, we
construct a concept embedding that satisfies as many triplet queries as possible.
That way, distances within this embedding correspond to perceptual similarity.
However, collecting raw triplet queries still requires a great deal of effort from

our human annotators. To address this issue, we show how to use a novel anno-

1See http://merlin.allaboutbirds.org/
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tation Ul design to increase the number of constraints by an order of magnitude
without a corresponding increase in annotation effort, leading to higher-quality

concept embeddings at less cost.

From here, we extend this work in Chapter 3 for very large-scale set-
tings. Unfortunately, with very large datasets, sparse human annotation is not
enough, so we combine these expert labels with automatic similarity kernels.
This way, deep-learned models can perform most of the “heavy lifting” by im-
puting the embedding with their visual knowledge while human experts fine-
tune the result with their intuitive knowledge. The resulting embedding cap-

tures visual similarity and expert intuition.

Finally, we build a bridge back from abstract concept embeddings to explicit
ontological semantics in Chapter 4. We study the task of assigning expert-
assigned labels for objects, styles, and emotions featured in a large-scale col-
lection of digital artwork. As before, the idea is to combine computer vision
models with human raters within a “human-in-the-loop” setting. To do this, we
incrementally train a deep-learned model to label the dataset while simultane-
ously guiding crowd annotator attention toward the difficult or unclear exam-
ples, similar to an active learning approach. Taking care of the “easy” examples

automatically makes the best use of the crowd’s effort.

All of the work in this thesis makes extensive use of the Mechanical Turk
crowdsourcing platform. Many workers on Mechanical Turk typically perform
this job professionally, many come from underprivileged backgrounds, and
many rely on full-time Turk tasks as their only form of income. This means
that the requester/worker power dynamic can have considerable impact on

workers” quality of life. To respect this, we try to follow the “We Are Dynamo”
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group’s “Guidelines for Academic Requesters” as best we can.” In particular,
we try to provide realistic time estimates and detailed descriptions, we pay the
median worker a wage of at least $8 per hour (a number generally considered
fair on this platform), and we never outright reject work from workers. Instead,
we use quality control techniques to ignore problematic results, trusting work-
ers to complete these subjective tasks to the best of their abilities. In rare cases
where we need to block a worker, we do so nondestructively without harming

their permanent record.

We leave several potential avenues for future work. For example, it is still
not widely known which attributes could characterize artistic expression. In
Chapter 4, we relied on an expert taxonomy, but it is conceivable that a model
with strong intuition may understand which related concepts are meaningful to
humans and which are not. Additionally, it could be worthwhile to study how
to transfer strong intuition from a pre-trained machine back to a human learner

in a machine-teaching setting.

Finally, it is worthwhile to investigate the many forms of bias in our results,
both in terms of demographic worker selection and domain familiarity. For ex-
ample, workers from different cultures and backgrounds may be familiar with
different kinds of food, so they may be able to offer specialized expertise. A
better system could potentially model and take advantage of workers’ familiar-
ity within the domain of interest for fine-grained refinement of the embedding

results.

Bias creeps into our system in other ways. For example, our work only

uses Mechanical Turk workers from the United States. The Food-100 and

2See the open letter to researchers here: http://wiki.wearedynamo.org/index.php/
Guidelines_for_ Academic_Requesters
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Yummly10k dataset used in Chapter 2 and Chapter 3 are predominately skewed
towards American and European cuisine. No attempt to correct for this bias was
created, so it is unlikely that models learned from this data will be able to gen-
eralize to other kinds of dishes. Correcting bias is a necessary step for future

work.

As one final parting comment, if we truly believe that machines should serve
humans rather than the other way around, we should carefully consider how to
give machines humanistic traits like strong intuition or compassion or kindness.
Focusing on strong intelligence with the goal of merely surpassing humans’ in-
ference or problem-solving ability should not be the only academically interest-

ing path.
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