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Abstract
This paper addresses two problems that have been largely

overlooked in the literature. First, many systems seek to use,
and algorithms claim to provide, rotational in-variance, such
as fingerprint minutiae or SIFT/SURF features. We intro-
duce a statistical test for rotational independence, using
lossless rotations to show the differences are statistically
significant and cannot be attributed to image noise. We use
this to experimentally show fingerprint feature extractors
fail to be rotation independent. We show the popular “ro-
tation invariant” SURF and SIFT feature extractors, used
in both biometric and general vision, also fail the rotation
independence test.

We then introduce a match-twist-match (MTM) paradigm
and experimentally demonstrate that, by reducing the ef-
fective angular difference between probe and gallery, we
can improve system matching performance. Our analysis,
using FVC2002 and FVC2004 datasets, further shows that
differences in extracted features impact the overall system
performance of fingerprint matching of both matchers tested.
Using the MTM approach, we reduce our secure template
system’s errors by 10%-20% – helping us to define the cur-
rent state of the art in the FVC-OnGoing Secure template
competition with an EER of 1.698%.

We end by bringing to the forefront the growing danger
of sensors over-preprocessing of images. We show examples
of the problems that can arise with preprocessing. As our
rotation experiments showed, the impact of even modest
numbers of feature errors suggest these preprocessing issues
are likely very significant. We suggest the need for policy
guidelines that require disclosure of preprocessing steps
used and the development of standards for testing the impact
of preprocessing.

1 Introduction
Throughout computer vision, but particularly in biometrics,

people often use image preprocessing/enhancement and ro-

tationally invariant features to address the fact that, in opera-
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Figure 1. Original (0◦) fingerprint Image(a) with minutiae in green,
minutiae orientation in yellow, and a region of interest outlined
in cyan. (b) shows the image losslessly rotated 90 degree, then
minutiae computed. In (c) we see 250% enlargement of region
of interest in 0◦ and 00◦, where it is clear that the 90◦ a real
minutiae, colored magenta, was detected, but was missed in the
original. The NIST MINDTCT, with default parameters, was used
for extracting minutiae from images at different angles. there are
no differences in pixels, but there is a difference in the number
of minutiae – clearly the detector is not rotation invariant. This
paper will show this rotational dependence is common (even for
SIFT and SURF), statistically significant, and impacts matching
results. We then present an algorithm to mitigate the rotational
(non)-invariance.

tional settings, data may not always be ideal and/or aligned.

This paper examines issues in rotation invariance and pre-

processing – challenging some long held beliefs.

Within an automated biometric system, fingerprints are

the most widely used modality with applications in crim-

inal investigations, border control, time & attendance and

access control systems. After decades of research in this

mature subfield, the image processing and feature extraction

is generally taken for granted and largely ignored. It is gen-

erally claimed (and often strongly believed) that fingerprint
matching systems are rotation-invariant [5, 20], meaning

that the fingerprints should match equally well at any angle.

In this paper, we demonstrate that some fingerprint match-

ing systems, including those quoted above, are not com-
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Figure 2. A second issue explored herein is that of significant
image preprocessing. Here we show three images of the same finger.
The left image is a cropped region from a fingerprint sensor image
with minimal spatial processing. The middle and right images show
a similar region from the same finger, acquired with a sensor using
aggressive preprocessing. The horizontal cut in the ridges of the
left image reflects the real finger condition. The second sensor’s
preprocessing artifacts act to cover up the cut and produce differ-
ent artifacts on different measurements. Overall the preprocessed
sensor has inflated its NIST Fingerprint Image Quality (NFIQ)
score, but preprocessing also induces false minutiae artifacts. The
artifacts, which do not exist on the real finger, can present problems
for subsequent processing by algorithms or humans, especially
because of their inflated quality and unique shape characteristics.

pletely rotation invariant. The cause of this surprising result

is that, while the matching algorithms may be invariant, the

underlying feature extraction is not. We show non-invariance

also applies to the widely used “rotation invariant features,”

such as SIFT and SURF.

Most of these feature extractors are moderately invariant,

with only small differences in detected features under rota-

tion. Because image noise results in feature variations as

well, the approximate invariance likely leads to the actual

non-invariance being overlooked. However, when systems

need to approach 95+% accuracy, even small differences can

matter. We tested for invariance using lossless transformed

(flipped) images, and statically rejected, at very high sig-

nificance levels, the hypothesis of rotational independence.

We tested NIST, Digital Persona, and Neurotec fingerprint

minutiae extractors as well as SIFT and SURF, and, for

each, rejected the hypothesis of rotational invariance. For

fingerprint matching, we show this non-independence has

an impact on matching performance on public algorithms.

We then show how estimation of inter-image rotation angles,

followed by de-rotation (twist) and re-matching, improves

fingerprint matching performance. We evaluate on both open

source code, for easy reproduction of our experiments, and

on state-of-the-art systems. In particular, we show the match-

twist-match approach helps in achieving the state of the art

in the FVC-onGoing “secure template” competition.

The paper also addresses issues in image preprocessing

before feature extraction. Artifacts introduced by preprocess-

ing in fingerprint images are rarely discussed in literature.

To highlight/explain the types of issues raised by prepro-

cessing, Figure 2 shows different image chips from different

sensors/preprocessing. The first image has minimal process-

ing, but yields no high-quality (NFIQ=1 or 2) minutiae in

that region, largely because the cut on the finger limits confi-

dence for the minutiae actually present. A human fingerprint

examiner, like the algorithm, can identify minutiae in the

region but would also discount the cut region slightly. The

other two images highlight the type of highly preprocessed

artifacts produced by some sensors – with multiple NFIQ=1

minutiae in each window. However, only one of those “high

quality” minutiae matches is shared between them; the other

minutiae are just “high-quality” phantasms from the sensor’s

distortion of reality. If the middle image was the enrollment

and the right was used as a basis of comparison, then the

high-quality false minutiae could cause problems. Those

features might even be considered points of exclusion by

a human expert, allowing the person to repute an asserted

match, causing legal problems during forensic/criminal in-

vestigation or other situations when human matches would

be necessary.

We have analyzed false artifacts from multiple sensors,

but not in statistically significant volumes. Our intention

is not to “point fingers” at any specific sensor vendors, but

to highlight potential problems occurring due to excess pre-

processing and to call for more work and standards in this

area. Basic pixel-level normalizations are to be expected and

offer little risk. However, recent systems have been adding

spatial image processing, often not described publicly. Such

processing may make the image “look better” and enhance

feature extraction, e.g. allowing higher NFIQ scores to be

touted in company marketing claims. This is an area often

taken for granted, and such claims might go unchallenged.

However, we suggest such preprocessing can introduce new

classes of errors which can cause problems for later stages

of processing, or even humans interpretation.

We have four main contributions in this paper:

1. We introduce a testing methodology with necessary con-

ditions for any truly rotationally invariant system, which

may be used to test feature extractor designs.

2. We assess fingerprint minutiae feature extractors as well

as popular computer vision feature extractors, such as

SURF [1] and SIFT [13], and show they fail to be fully ro-

tation invariant. This is novel, as many people incorrectly

believe, and many papers claim, these features/systems

are rotationally invariant.

3. We introduce the Match-Twist-Match paradigm for miti-

gating minor rotational dependence and show it improves

matching performance in real systems.

4. We introduce and discuss issues of spatial image prepro-

cessing in fingerprint systems, highlighting often over-

looked issues and suggesting the need for more research,

policy guidelines, and new standards.

2 A Rotational Invariance Statistical Test
There are many feature detectors, from minutiae to general

vision features, that claim to be rotationally invariant. Given
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a feature extractor that claims to be rotationally invariant,

how do we test that claim? This section gives a statistically

grounded method for testing such claims.

Formally, one might find a single counter example, as

we shown in Fig. 1, that contradicts the invariance property.

However that does not mean it has any “significant” impact,

especially on the overall performance. Thus our proposed

“necessary approach” to test such a claim is to define a hy-

pothesis of the impact on match scores, then statistically test

that hypothesis.

Definition 1 RIST: Rotational Invariance Statistical Test Let
S(P,G), be a match score, e.g. Equal Error Rate, of a
system given probe set P and gallery set G. Letting PX be
the probe set with each image rotated by X , we can compare
the results when matching a rotated probe set PX with the
gallery G, i.e.,. compare S(PX , G) for different X . To avoid
confounding rotational dependence with image/sensor noise,
RIST uses probe sets P0, P90, P180, P270, with the original
probe images losslessly rotated images by 90, 180 and 270
degrees respectively. Thus the pixel data in each probe set is
identical, only the rotation is different.

The RIST null hypotheses Ho are that S(P0, G) ==
S(PX , G) for X = 90, 180, 270. Given that the experi-
ments use the same probe and gallery pairs, RIST uses a
two-sided paired t-test to assess the statistical significance
of the result. Note that this hypothesis is necessary, but not
sufficient for true rotation invariance.

To analyze the rotation invariance for fingerprint match-

ing, we run experiments using NIST and Digital Persona

fingerprint minutiae exaction and the NIST Bozorth match-

ing systems on the complete FVC2002 [14] and FVC2004

[4] database. We also did experiments using the Neurotec

fingerprint system and found that even the Neurotec match-

ing system, in addition to NIST and Digital Persona systems,

is not rotation invariant. However, since we only had access

to the demo version, with limited operations, we did not do

full statistical testing on Neurotec.

The FVC2002 and FVC2004 databases contain four

datasets: DB1A, DB2A, DB3A, DB4A. Each dataset has

800 images, Iij in datasets Fm (1 ≤ m ≤ 4) consists of

one hundred subjects (1 ≤ i ≤ 100) and eight samples per

subject (1 ≤ j ≤ 8). The standard FVC2000 protocol [15]

is used to analyze the error from matching and non-matching

distribution. For matching distribution, each probe image

Iij is matched against gallery images Jikl ((j < k ≤ 8)

and (1 ≤ l ≤ 4)), where we extend it to include at rota-

tions at 0, 90, 180 and 270 degrees, as l = 1..4 respectively.

The total number of genuine recognition attempts are 11200

(((8*7*4)/2)*100). For non-matching distribution, each

probe image Ii1 (1 ≤ i ≤ 100) is matched against gallery

images consisting of first fingerprint image from non-match

fingers at 0, 90, 180 and 270 degree Jk1l ((i < k ≤ 100) and

Rotation 90◦ 180◦ 270◦

02 DB1 9.0E-79 1.9E-80 2.9E-59

02 DB2 1.8E-105 8.9E-76 4.2E-106

02 DB3 4.8E-10 1.3E-16 5.2E-26

02 DB4 2.6E-45 1.1E-21 5.3E-23

04 DB1 1.11E-31 2.15E-24 6.58E-39

04 DB2 2.29E-62 1.17E-41 3.20E-49

04 DB3 5.31E-13 1.92E-65 1.42E-21

04 DB4 2.00E-13 6.42E-15 1.58E-08

Table 1. P-values for two sided paired T-test for rejecting Ho, the
hypothesis that the system is rotation invariant is tested on various
FVC databases using MINDTCT minutiae. All results are very
significant, so we reject rotational independence and conclude that
the rotation dependence of the MINDTCT minutiae extractor’s
impact on Bozorth matching is statistically significant.

Rotation 90◦ 180◦ 270◦

02 DB1 1.1E-31 2.2E-24 6.6E-39

02 DB2 2.3E-62 1.2E-41 3.2E-49

02 DB3 5.3E-13 1.9E-65 1.4E-21

02 DB4 2.0E-13 6.4E-15 1.6E-08

04 DB1 5.2E-43 4.3E-01 1.2E-43

04 DB2 4.4E-05 4.8E-02 9.1E-03

04 DB3 1.1E-182 2.0E-10 2.0E-178

04 DB4 3.8E-07 9.2E-02 6.4E-03

Table 2. P-values for rejecting hypothesis that rotation does not
impact scores using Digital Person Fingerjetfx on various FVC
databases. Most results are very significant (p << .01), but a few
of the 180 degree are only significant (.01 < p < .05). Again, we
conclude that the rotation dependence of the FIngerjetFX minutiae
extractors is statistically significant.

(1 ≤ l ≤ 4)) and corresponding impostor matching scores

are recorded. The total number of impostor recognition at-

tempts are 19800 (((100*99)/2*4)). Our score S(PX , G) is

the equal error rate obtained by the NIST NBIS Bozorth

matcher on the features of the images. Testing with other

features, such as False NonMatch Rate (FNMR), also called

False reject rate) at a fixed False Match Rate (FMR) have

similar results. Table 1 and Table 2 show the p-values from

a 2-tailed paired T-test with the 7750 scores before and af-

ter rotation, using NIST and Digital Persona Fingerjetfx

respectively. For every rotation, the null hypothesis Ho is

rejected as very significant, so we conclude the rotations

impact scores in a way that is statistically significant.

We also performed tests on the Bozorth matcher using

minutiae files in which the minutiae coordinates were al-

gebraically rotated and found no significance in matching

scores. Because the matching algorithm appears to be rota-

tionally invariant, we can assign the cause for non-invariance

to the feature extractors themselves. This is consistent with

our finding, as we know the number of features extracted

varies under even lossless rotations.

It is illustrative to consider the “rotation invariance” of
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Rotation 90◦ 180◦ 270◦

Bedroom 3.74E-08 2.2E-04 0.608

CALsuburb 0.029 0.008 0.113

Industrial 2.38E-17 3.99E-14 0.645

Kitchen 0.0617 0.0072 0.1905

Living room 4.80E-12 2.15E-08 0.272

Overall 7.73E-30 4.22E-25 3.42E-02

Table 3. P-values for rejecting the hypothesis Ho, that rotation does
not impact scores on various Scene Categories from a database
with five objects: namely bedroom, CALsuburb, industrial, kitchen
and living room having 200 different images each. Most individual
and the overall results are significant (p < .05) and most are
very significant (p < .01), so one can conclude that the rotation
dependence of the SURF feature extractor are very statistically
significant.

other computer vision feature extractors, such as the well

known SURF [1] and SIFT [13]. While SIFT/SURF are used

in face recognition [2, 6], fingerprints [17], and other bio-

metrics , we evaluated on scene classification [12] datasets,

just to show the issue is very general. We used five ob-

jects: bedroom, CALsuburb, industrial, kitchen and living

room, having 200 different images per category, i.e. a total

of 1000 different images in our experiments. For feature

extraction, we use the OpenCV implementation of both ex-

tractors. As for fingerprints, each probe image is rotated

by 0, 90, 180 and 270 degree using lossless transformation,

and separate features are produced. For simplicity, we let

S(Px, G) = |#F (Px)−#F (G)‖, i.e. we simply compare

the number of features extracted in the probe and gallery. If

the feature extractor was invariant, that number would not

change under rotation. We consider the same null hypothesis

Ho, and again we apply a 2-tailed paired t-test in testing.

Tables 3 and 4 show the the p-values from a 2-tailed paired

T-test with SURF and SIFT feature extractor respectively.

The tests use 200 images per class and 1000 images overall.

For each lossless rotation angle, the null hypothesis Ho is

rejected at very significant to significant levels, so we con-

clude the detectors are not rotation invariant, and it impacts

the scores in a way that is statistically significant. We also

considered the relative difference in scores for SIFT and

SURF. The magnitude of errors was smaller for SIFT and

the pair-wise t test reject the null hypothesis that SURF has

equal or better invariance as SIFT with p-values of 3.00E-14,

3.03E-07 and 9.85E-06 for 90, 180, and 270 respectively.

Thus we conclude SIFT is statistically significantly better,
in terms of these rotational invariance tests, than SURF.

As we mentioned, the RIST approach with hypothesis

Ho is necessary but not sufficient for rotational invariance.

True rotational invariance requires invariance at all angles;

however, testing that requires modeling sampling effects.

The proposed RIST method for evaluation is easy to im-

plement/use and could/should be used by designers of ro-

tationally invariant feature extractors to evaluate the algo-

Rotation 90◦ 180◦ 270◦

Bedroom 0.456 0.091 0.885

CALsuburb 0.011 7.0E-4 0.116

Industrial 0.084 0.134 0.147

Kitchen 0.705 0.002 0.276

Living room 0.391 0.060 0.465

Overall .207 2.15E-07 .032

Table 4. P-values for rejecting a hypothesis that rotation does not
impact scores on various Scene Categories from a database with
five objects: bedroom, CALsuburb, industrial, kitchen and living
room having 200 different images each. For sift only about 1/3
of the individual results are significant, and overall only 180 and
270 show significance. Thus one can conclude that the rotation
dependence of the SIFT feature extractor are statistically significant
at some rotations. The SIFT significance was clearly lower than
SURF, so also applied a paired t-test on the difference between
SIFT and SURF, and strongly reject the hypothesis that SURF is as
rotational invariant as SIFT.

rithms. Future work may explore the root cause of the non-

invariance, e.g. is it inherent or just an implementation flaw.

For now, we address what we can do about it at a systems

level.

3 A Twist To Improve Matching
Given that we have shown that minutiae extraction differ-

ences lead to matching systems that are not rotation invariant,

it is natural to explore if it can be corrected. We designed an

approach, Match-Twist-Match (MTM), to reduce the differ-

ence in rotation between the probe and gallery images. We

test this approach using two matching algorithms.

Even with the variations in extracted minutiae, match-

ing prints will likely have a partial match, so we propose

the MTM process of coarse matching, rotation estimation,

twist (derotation of one image by the negative of the esti-

mated rotation), reprocessing to extract minutiae, and then

rematching. This concept, pre-processing with a twist, can

be applied to any matching system.

For our fingerprint matching, we modified the NIST BO-

ZORTH3 minutiae matcher to output an estimated rotation

angle between the original probe and gallery images. The

Securics/UCCS Bipartite Biotope algorithm, described be-

low, already provides estimated rotation. It may be worth

noting that, while there are many papers on ridge orientation

field estimation, that is not the problem being examined here.

While other papers may also do overall fingerprint orien-

tation estimation, any algorithm for estimating orientation

between the probe and gallery would do for this application;

we don’t consider our Bozorth modifications significant. The

contribution here is the MTM, the idea of using the estimated

inter-print orientation to twist (derotate) the pair and match

again as a way of addressing feature extractors that are only

approximately rotationally independent.

One might think this would approximately double the
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Figure 3. ROC curve show for both NBIS enhanced with MTM
and the Bipartite Biotope (BBiotope) fusion of two components
enhanced with MTM. The BBiotope on DB1A of both FVC2002
and FVC2004, shown as open symbols, does significantly better
than NBIS (filled symbols of same shape). The BBiotope with MTM
and fusion also does better than the original Biotope algorithm,
see (Fig.3 in [3]), especially at lower FMR.

Figure 4. Improvement plots for MTM enhanced NBIS on FVC2002
and FVC2004 datasets. Percent improvement in False Non-Match
Rate (FNMR) at a fixed False Match Rate over the practical region
of FMR. Above 10% FMR has little security, and below .01%,
there is insufficient data for meaningful analysis. From the plots,
it clear that MTM generally provides moderate improvement, with
the exception of FVC04 DB2.

matching cost. However, the derotate-rematch step is needed

only for probes with scores near the decision boundary – if

the coarse level match score is sufficiently high (clear match),

or extremely low (not even close to a match), then derotation

and rematching will not likely change the outcome and can

be skipped.

Once again, the standard FVC protocol [15] is used to

analyze the error from matching and non-matching images

in FVC2002 and FVC2004 dataset. We analyzed two al-

gorithms. The first was the NBIS Bozorth Matcher with

MINDTCT extractor already discussed, both native and with

MTM enhancements. Our second algorithm was to apply

these enhancements to the Securics/UCCS Bipartite Biotope

Figure 5. Percentage improvements using MTM approach on the
components used in the Bipartite Biotope secure-template matching.
The core BBiotope approach was run separately with different
minutiae feature extractors (libFME and FingerJetFX), each of
which estimated matched, twisted and matched again. There is
generally a significant improvement for each approach, except at
high FMR for libFME on FVC04 DB1a.

(BBiotope) algorithm[3] as extended in [18] and to study

choices of minutiae extractors and the effect of rotation. The

BBiotope algorithm is a leading secure template matching

approach to which we have access, including its extractor

libFME which was derived from MINDTCT but with numer-

ous modifications. BBiotope, like NBIS, is also supposed to

be rotationally independent – the matcher is but the extrac-

tors are not.

The Figure 3 shows the ROC curve for fingerprint match-

ing of probe and gallery image using MTM enhanced NBIS

and the Bipartite Biotope approach on FVC datasets. It can

be noted that fingerprint matching is enhanced when probe

and gallery images are aligned before matching, especially

at the generally more important lower FMR rates. The Fig-

ure 4 gives improvement results of MTM enhanced NBIS

method on FVC datasets. The improvements were consistent

on FVC202 datasets. We found similar but slightly smaller

improvements on DB1A and DB3A of FVC2004 datasets,

and, for DB2A and DB4A, the MTM performs the same as

non-rotated images. In the collection of FVC2004 [4], the

subjects were instructed to distort their prints, pressing hard

and/or rotating while collecting with the goal to increase dif-

ficulty in recognition. These distortions increase the chances

of error in estimating the angle between the probe and gallery

images in the first stage of the twist algorithm and also in-

crease the overall match accuracy. Either of these could have

impaired or masked improvements of the the Match-Twist-

Match approach. We do note that while the “twist” did not

help, it did not degrade performance either.

The amount of improvement for the components used in

the BBiotope are shown in figure 5. We see that for each

feature extractor, the MTM approach improves performance.

Using this approach, we reduce the errors of the components

for our secure template system’s errors by 10%-20%. The
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final system use for the FVC-OnGoing competition results,

does a max score-level fusion of the two MTM enhanced

matchers, improving results further. The improvement was

important to use because various changes since 2009, in-

cluding dealing with the Bipartite storage itself as well as a

potential attack on the template, had slightly reduced accu-

racy at a fixed template size. By using MTM and fusing two

different features, it helped us to define the current state of

the art in the FVC-OnGoing Secure template competition,

with an EER of 1.698%.

4 Spatial Image Processing of Fingerprints
In fingerprint verification/authentication, the ridge structure

and/or minutiae are the most widely used features [10]. The

extraction of these features is impacted by the quality of

a fingerprint image. In operational environments, finger-

print quality may be reduced because of poor contact with

the fingerprint sensor, physical distortions on the print (e.g.

cuts/abrasion), noise at the sensor (e.g. surface or sensor

noise), and many other reasons. To overcome these limita-

tions, the fingerprint sensor manufacturer includes prepro-

cessing on the raw sensor data, generally implying that the

preprocessing improves the recognition performance. Early

sensors were direct imaging, or images of Frustrated Total

Internal Reflection (FTIR) images. The raw sensor data in

such systems is a direct image, and processing was largely

per-pixel brightness/contrast adjustments, and overall geo-

metric distortion correction.

A significant amount of literature is available for finger-

print enhancement techniques that do image processing on

“raw fingerprint images” [11, 21, 9, 7, 19] to improve their

use in fingerprint recognition. Since the raw image was al-

ready formed, such processing is a type of post-processing.

When carefully examining the raw image and processed im-

age in [11, 21, 9, 7, 19], it is clear that occasional artifacts

can be observed on the processed image, especially in low

quality regions. It is important to assess the impact of image

quality, including artifacts, especially in applications where

enrollment and verification may use different sensors. Qual-

ity testing and inter-operability testing has long been a part

of fingerprint research.

Sensor properties plus preprocessing done by fingerprint

sensors can create artifacts. The author in [8] used six differ-

ent sensors for capturing fingerprint images and used NIST

and Neurotec fingerprint matching systems. EER estimated

using NIST and Neurotec algorithms shown in [8] were sta-

tistically different for all six of the different sensors. The

reason why errors exist when the fingerprint image is cap-

tured from different sensors is not explored.

For multiple reasons, organizations developed measures

of the quality of fingerprint image, such as the NIST NFIQ

measure. Such image quality measure scores were origi-

nally intended to be predictive of relative performance of

Figure 6. Images captured from the same finger using a sensor with
advanced spatial image processing. The image output by the sensor
looks great, but has hidden dangers. The minutiae in red colored
region represent different minutiae information for the same finger.

a minutiae-based fingerprint matching system and served a

very useful purpose. However, they are now being used to

get certificates such as PIV and for general marketing as a

measure of sensor “quality.” Such uses are at odds with the

goal of maintaining fidelity to the original image and the

goal of predictive power of the quality measure – one could

trivially produce an image with perfect NFIQ by returning

the same “perfect” artificial image every time.

With the introduction of capacitive and other solid-state

sensors, and more recently multi-camera and multi-spectral

sensors, combined with the increasing computational ability

that can be embedded in a sensor, the level of advanced

image pre-processing before the fingerprint algorithms even

see the images has increased dramatically. In particular, the

systems are now doing extensive spatial image processing,

and, in this section, we explore some of the issues on spatial

image processing on fingerprint images which we believe

need to be addressed at the level of policy and standards.

Figure 6 shows the full prints of the same finger shown

in Fig.2 from a sensor that includes advanced spatial image

processing. Let us briefly examine the differences between

these images. The local loop + ridge ending in the left of the

circular region is a double bifurcation with a smaller local

loop + ridge ending in the circle on the right. In the rectan-

gle on the left, there is another double bifurcation structure

while, on the right, there is no minutiae at all. In both cases,

the image processing has made good contrast and smooth

ridging with good connectivity and flow, i.e. good quality

minutiae and ridges. In the pentagon on the left, there is yet

another double bifurcation (lower contrast this time, in the

upper part of the pentagon), and on the right, there is a bifur-

cation - ridge - ending in a bifurcation triple. In the diamond,

there are again significant structural differences. The struc-

tural changes show that the spatial preprocessing performed

by the sensor creates spurious minutiae or removes genuine

minutiae. Not only are there differences, but a number of

these minutiae have very uncommon structures, structures
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our algorithm decided were ideal for matching, especially if

trying to minimize the template size. This caused us signif-

icant problems before we understood the cause of reduced

performance on this particular sensor.

On the positive side, some level of spatial image process-

ing is almost a necessity for multi-image integration and can

be useful for managing low quality regions. The ability to

fill in gaps and deal with low quality can be very useful for

low-quality prints, but is fraught with difficulty. The spatial

processing are not, however, limited to issues with cuts or

low-quality regions. In many of our experiments, we had

issues with clean fingers that produce excellent images in

regular sensors. For example, Figure 7 shows three captures

from a sensor with significant image processing as well as

a standard sensor. The circle in Figure 7 shows the finger

region in the standard sensor in the the lower left sub-image.

That image has a downward bifurcation in the lower left

within the circle and a ridge ending in the right side of the

circle. In the circles in the preprocessed images, we have 2

bifurcations and a bridge structure (upper left image), a cor-

rect image (upper right) and an almost indiscernible image

structure (lower right). In the square, we see the normal print

has a single upward bifurcation. The square region for the

upper left advanced processed image has one upward bifur-

cation, an added downward bifurcation and another inserted

bridge ridge. In the upper right processed image, there is an

upward bifurcation as well as an added downward bifurca-

tion. The lower right processed image has the ridge ending

and is missing the upward bifurcation. This finger produce

far more false-rejects than many other fingers.

It is quite clear that the extensive preprocessing within the

sensor can create artifacts and changes the genuine biomet-

rics features recorded in the database. Likely for competitive

reasons, the images are made to look nearly ideal, and hide

the flaws. When the spurious biometrics features are added

and genuine biometrics features are removed due to exten-

sive preprocessing, all while providing excellent apparent

image quality, it’s a problem. We propose that, at least for
evaluation/enrollment purposes, all sensors should be re-
quired to provide a minimally processed image(s), with only
per-pixel operations and global geometric corrections. A
weaker but useful operational alternative would be for the
sensors to provide an adjustment map, an image with per-
pixel or per-region value that dictate how much processing
changed the pixels or the region. Of course, the sensors

should be allowed to provide their enhanced images by de-

fault, but without either the raw data or an adjustment map,

there is too much risk of artifacts that cannot be detected in

those enhanced images. The advantage of the raw image,

which is why we propose that approach, is that human exam-

iners can assess differences and researchers can better assess

the impact and develop new measures and standards in this

area.

Figure 7. Clean print on a normal fingerprint sensor (lower left)
images, and 3 examples from an image with significant spatial im-
age processing. Compare the structures in the circled and squared
regions. We really don’t know what causes the very distorted images
like the lower right, where even the overall flow is wrong.

The PIV certification performed by NIST just specifies

that the artifacts, anomalies, false detail or cosmetic image

restoration effects detected on fingerprint images due to a

device or image processing shall not significantly adversely

impact the supporting intended application [16]. There can

be no automatic procedure that checks and gives the score

for the amount of preprocessing done unless the raw images

are also available. Given the raw images, there could be

several tests which might quantify the level of preprocessing

in a fingerprint image. For example, one might propose to

use any of the many tests used to test the quality of image

compression algorithms. However, since we do not have

access to the raw images from these sensors, any proposed

approach would be purely speculative at this time. Therefore,

the only approach we can propose at this time is the need for

more research, regulation, and standards in this area.

5 Conclusion
In this paper, we have highlighted two neglected but im-

portant problems in fingerprint matching – the claimed ro-

tational invariance and the impact of image processing on

fingerprint images, and we have presented a novel solution.

Our solution, a Match-Twist-Match paradigm, improves per-

formance when features are approximately, but not fully,

rotationally invariant. The rotational non-invariance issue,

and the MTM paradigm, transcend fingerprint matching,

with broader applications in biometric and vision systems.
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We have challenged the standard claims and long-held

belief of many “ rotationally invariant” features, showing

experimentally that, while they are roughly invariant, the

rotational dependencies are statistically significant, resulting

in statistically significant rotational non-invariance of the

system’s performance. In particular, because of their image

processing, the three minutiae extractors tested are not ro-

tationally invariant, leading to measurable non-invariance

in system patching performance. We also analyzed popular

“invariant” computer vision feature extractors, such as SURF

and SIFT feature extractors, showing that they too are not

rotation invariant.

Given that we can measure a difference in fingerprint

matching performance as the relative angle between the

probe and gallery samples, the next question was what do do

about it. To overcome the limitations of the rotation invariant

characteristic and enhance fingerprint matching performance,

we propose a new paradigm – match-twist-match. This is

basically a two stage matching process, with the first coarse

level match producing an estimated rotation between the

probe and gallery, followed by probe twisting (derotation at

that angle), and finally a rematch. This MTM approach is

shown, on FVC datasets, to improve fingerprint matching of

both the open source NIST NBIS Bozorth Matcher, and the

Securics/UCCS Bipartite Biotope Secure template match-

ing algorithm. The latter, when fusing two features with

MTM enhancements, is the best performing secure template

matching algorithm in the FVC-OnGoing competition, i.e.

the MTM approach presented herein helps produce a state

of the art algorithm.

Second, we explored the impact of sensors’ spatial image

preprocessing, showing they can create non-obvious artifacts

wherein genuine minutiae can be removed and spurious, of-

ten uncommonly shaped, minutiae added. In such sensors,

the processing attempts to enhance the apparent quality so

the artifacts end up with inflated quality measures and clean

looking images making errors in the image invisible to a

human. At a minimum, such characteristics are something

of which algorithm designers should be aware. Furthermore,

such processing can introduce a “point of exclusion,” with

an apparent high-quality but false minutiae that could/should

limit the legal use of such images. This renders them gen-

erally unfit for use in higher security, such as forensic aid

to help criminal investigation, banking, UIDIA or other ap-

plications where human validation of prints may be needed.

There is, however, no requirement for sensor manufacturers

to provide the underlying raw images nor to disclose the type

of preprocessing done. We argue that regulations/standards

are needed in the area of spatial image preprocessing in

fingerprint sensors.
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