
LEARNING PERCEPTUAL SIMILARITY FROM
CROWDS AND MACHINES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Michael James Wilber

May 2018



c© 2018 Michael James Wilber

ALL RIGHTS RESERVED



LEARNING PERCEPTUAL SIMILARITY FROM CROWDS AND MACHINES

Michael James Wilber, Ph.D.

Cornell University 2018

How might we teach machine learning systems about what wine tastes like,

or how to appreciate the similarities in different kinds of artwork?

On its face, this question seems absurd because these notions of similarity

are impossible to characterize in meaningful ways. Our work explores what

happens when we can embrace this ambiguity. We use new kinds of semi-

supervision to learn abstract, intuitive notions of perceptual similarity when

labels or dense similarity measures are not available.

Before we can learn about perceptual similarity, we must first show how to

capture intuitive notions of similarity from humans in an efficient and princi-

pled way that makes as few assumptions as possible about the data structure.

Then, we outline ways to combine expensive human expertise with dense ma-

chine kernels to ease the human annotation burden. Finally, we will discuss our

work on creating a large-scale dataset of artwork that the research community

can use to explore these ideas.



BIOGRAPHICAL SKETCH

Mike grew up in the shadow of the mountains in Colorado Springs, Col-

orado. During college, he studied under Dr. Terry Boult and Dr. Walter Scheirer

at the Vision and Security Technology (VAST) Lab at the University of Colorado,

Colorado Springs before receiving his Bachelors of Innovation in Computer

Science in 2013. From there, he joined Dr. Serge Belongie’s research group at

UC San Diego, following his advisor to Cornell Tech in Manhattan to continue

his Ph. D. studies.

Mike’s hobbies include reading, walking around nature, studying Japanese

(though not fluently), and exploring the quiet coffee shops and libraries around

the city.

iii



This dissertation is dedicated to all past and future members of the Trans

Crossroads Discord emotional support team.

As lighthouses for our community, they provide refuge from the storm, gently

pointing the way towards our best selves whenever we run aground.

iv



ACKNOWLEDGEMENTS

Oh heck, where could I possibly begin? I know I wouldn’t be where I am with-

out my mentor, Serge Belongie, whose patient guidance was instrumental to my

graduate career. I have also had the pleasure of relying on the support and en-

couragement of many peers. This thesis is based off of joint work with Andreas

Veit, Sam Kwak, Chen Fang, Hailin Jin, Aaron Hertzmann, John Collomosse,

and Serge Belongie. Chatting with my peers and colleagues and everyone else

in the SE(3) research group and their alumni is always a pleasure, but I owe

particular gratitude to Andreas Veit, Yin Cui, Omid Poursaeed; the “UCSD Co-

hort” of Tsung-Yi Lin, Hani Altwaijry, Mohammad Moghimi, Grant Van Horn,

Sam Kwak; and former mentors Boris Babenko and Catherine Wah. (“Once a

king or queen of SE(3), always a king or queen of SE(3).”) Thanks also to Xiao Ma,

Neta Tamir, Laurens van der Maaten, Vicente Malave, and Zack Chase Lipton

for insightful discussions, and to Jan Jakeš, Tomas Matera, and Edward Cheng

for their software tools that helped us collect grid triplets so quickly.

Additional thanks go to mentors Chen Fang, Aaron Hertzmann, Hailin Jin,

James Davis, and Peter Wellinder, who all had a hand in my professional de-

velopment. I also wish to especially thank mentors Terry Boult and Walter

J. Scheirer. Their kindness and gentle mentorship through my undergraduate

program launched my career and I cannot possibly thank them enough.

Also, special thanks to my family, Peggy and David, along with my sister

Becca, who quietly offered support and encouragement through five years of

complaining phone calls and distant airport rides.

Finally, I want to thank my partner Angela, whose kind support and com-

passion for the world consistently reassure me that I don’t have to apologize for

being me. (“Rawrawrrawrrr! <3”)

v



As this acknowledgments section spills out onto a second page, I finally give

thanks to the Cornell Ithaca computer science department, who provided a wel-

coming home during my first disorienting confusing year at Cornell.

I want to emphasize that this work would not have been possible without

the kindness and generosity of all of these people as well as those too numerous

to mention.

In terms of financial sponsorship, my research was partially supported by an

NSF Graduate Research Fellowship award (NSF DGE-1144153), the Connected

Experiences Lab supported by Oath Inc, a Facebook equipment donation to Cor-

nell University, and Adobe Research.

vi



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

2 Cost-effective HITs for Relative Similarity Comparisons 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Synthetic Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Human Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Guidelines and conclusion . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Learning Concept Embeddings with Combined Human-Machine Ex-
pertise 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Background and related work . . . . . . . . . . . . . . . . . . . . . 26
3.3 “SNE-and-Crowd-Kernel” (SNaCK) embeddings . . . . . . . . . . 29

3.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 SNaCK example: MNIST . . . . . . . . . . . . . . . . . . . 31

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Incrementally labeling CUB-200-2011 . . . . . . . . . . . . 33
3.4.2 Experiments on Yummly-10k . . . . . . . . . . . . . . . . . 39
3.4.3 Interactively discovering the structure of pictographic

character symbols . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 BAM! The Behance Artistic Media Dataset for Recognition Beyond
Photography 47
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 The Behance Media Dataset . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Resulting dataset statistics . . . . . . . . . . . . . . . . . . . 59
4.2.3 Final quality assurance . . . . . . . . . . . . . . . . . . . . . 61

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vii



4.3.1 Detecting objects in artwork . . . . . . . . . . . . . . . . . . 63
4.3.2 Emotion and media: Which features are best? . . . . . . . 65
4.3.3 Using Behance-Media to improve the performance of ex-

isting models . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusion 71

Bibliography 75

viii



LIST OF TABLES

2.1 Labeling cost and error with respect to task design . . . . . . . . 17

4.1 Dataset comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Average precision across VOC object categories. . . . . . . . . . . 65
4.3 Performance of cross-dataset joint style classification model. . . . 68

ix



LIST OF FIGURES

2.1 Example crowdsourcing query design. . . . . . . . . . . . . . . . 5
2.2 Example cuisine embedding. . . . . . . . . . . . . . . . . . . . . . 8
2.3 Distribution of object occurrences in random vs grid triplets. . . 9
2.4 Error convergence using different sampling strategies. (Synthetic) 10
2.5 Example images from our food dataset. . . . . . . . . . . . . . . . 14
2.6 Median time for worker annotations. . . . . . . . . . . . . . . . . 15
2.7 Error convergence using different sampling strategies. (Human) 16

3.1 SNaCK embedding on birds. . . . . . . . . . . . . . . . . . . . . . 23
3.2 Overview of SNaCK embedding method. . . . . . . . . . . . . . . 25
3.3 SNaCK embedding on MNIST. . . . . . . . . . . . . . . . . . . . . 32
3.4 Experimental design for CUB-200 SNaCK embedding. . . . . . . 33
3.5 Incremental labeling accuracy of several semi-supervised methods. 36
3.6 SNaCK embedding examples for a subset of CUB-200. . . . . . . 36
3.7 Label discovery classification accuracy. . . . . . . . . . . . . . . . 39
3.8 SNaCK embedding on Yummly-10k . . . . . . . . . . . . . . . . . 40
3.9 Experimental design for Yummly-10k. . . . . . . . . . . . . . . . . 40
3.10 Yummly-10k convergence varying annotation cost. . . . . . . . . 42
3.11 Example GUI to refine concept embeddings . . . . . . . . . . . . 44

4.1 Object detector scores on photographs and artwork. . . . . . . . 48
4.2 Example images with the ‘Cat’ tag. . . . . . . . . . . . . . . . . . 53
4.3 Diagram of crowdsourcing pipeline. . . . . . . . . . . . . . . . . . 56
4.4 Example images from Behance Artistic Media. . . . . . . . . . . . 60
4.5 Dataset size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Dataset quality assurance. . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Precision-Recall curves for VOC object categories. . . . . . . . . . 64
4.8 Feature comparison on emotion and media attributes. . . . . . . 69

x



CHAPTER 1

INTRODUCTION

There is a tension in the field of computer vision. As computer scientists,

we primarily work with systems using reproducible, self-contained processes

that have quantifiable inputs and discrete outputs. However, these systems are

intended to model the real world, a messy unpredictable environment that does

not lend itself well to easily-describable formulations. Worse still, there is inter-

est in creating systems intended to mimic the human brain, an incomprehensi-

ble black-box system with complicated hidden inner state, inconsistent outputs,

and extremely limited introspection capabilities.

It is thought that creating “thinking machines” by modeling the brain is a

step toward “strong intelligence,” the idea that artificially intelligent systems

will one day be able to surpass humans in problem-solving abilities. How-

ever, achieving strong intelligence is orthogonal to the related goal of achieving

“strong intuition,” the unconscious humanistic awareness of the relationships

between similar things. This sort of intuition is a major source of human cre-

ativity and enjoyment. Intuition is how music punks know that Prince music

sounds more like Michael Jackson than it does to Avril Lavigne’s work, how

foodies know that oolong tea tastes more similar to sencha than it does to chai,

and how graffiti artists know which styles and personal touches make for aes-

thetically pleasing artwork.

Unfortunately for the scientist – but very fortunately for the artist – the

reasoning behind intuitive judgments are not necessarily expressible in words.

Computer vision continues to make steady progress in domains where expert

teachers are able to distill and serialize their intuition down to a codified cur-

1



riculum, but it is less obvious how to serialize our thoughts about, say, what

coffee tastes like or why two artists’ work is similar. For example, fine-grained

species recognition can rely on detailed field guides, centuries of ornithological

expertise, and an abundance of discrete labeled training data. However, what

can we do when this “bottom-up” approach is not available? How can we learn

about the layman’s perception of the similarity of two food tastes, for example,

without having to rely on expert chefs?

As one first step toward this goal, our general approach is to learn “concept

embeddings,” vector spaces where distance corresponds with similarity percep-

tion. To do this, our work focuses on three primary questions toward the goal

of learning strong intuition:

1. What are the quantifiable unit of similarity, and how can we efficiently col-

lect this information from large crowds of non-experts?

2. How can we learn similarity kernels on large-scale datasets that are infea-

sible to densely label by hand?

3. As an example domain, how can these ideas be applied to learn about

artwork media and style on a very large scale? What can the limitations

of computer vision systems on artwork teach us about the representation

gap between the realistic world and the world rendered through an artist’s

hands?

In Chapter 2, we consider triplets as the units of strong intuition. Each triplet

(x1, x2, x3) is an assertion of the form “Object x1 is more similar to object x2 than

object x3.” Triplets are desirable to other forms of annotation because they can

be collected from crowds in a straightforward fashion without relying on do-

main expertise. We show that thousands of these triplet annotations can be col-

2



lected in a cost-efficient manner using novel user interfaces on crowdsourcing

platforms. This lays the foundation for crowd annotation used in later work.

In Chapter 3, we extend this general idea further to learn intuitive similarity

at very large scale, combining sparse expensive human expertise with dense,

cheap automated kernels. Spaces learned this way require a fraction of the hu-

man labeling power than ordinary crowd kernels alone.

Finally, as a bridge back to explicit semantics, we lay the groundwork for ex-

ploring artistic intuition in Chapter 4 by collecting a very large-scale collection

of digital artwork using a combination of computer vision and efficient crowd-

sourcing for annotation. We use this dataset to probe how current computer

vision systems handle the “representation gap” between photography and styl-

ized artwork.

3



CHAPTER 2

COST-EFFECTIVE HITS FOR RELATIVE SIMILARITY COMPARISONS

2.1 Introduction

Recently in machine learning [63, 31, 66, 47], there has been a growing interest in

collecting human similarity comparisons of the form “Is a more similar to b than

to c?” These comparisons are asking humans to provide constraints of the form

d(a, b) < d(a, c), where d(x, y) represents some perceptual distance between x and

y. We will refer to these constraints as triplets. By collecting these triplets from

humans, researchers can learn the structure of a variety of data sets. For exam-

ple, the authors of [47] were able to learn music genres from triplet comparisons

alone with no other annotations. Specifically in computer vision, human sim-

ilarity comparisons are useful for creating perceptually-based embeddings. In

[2], the authors created a two dimensional embedding where one axis repre-

sented the brightness of an object, and the other axis represented the glossiness

of an object. In this work we focus on creating perceptual embeddings from

images of food.

For any set of n points, there are on the order of by n3 unique triplets. Col-

lecting such a large amount of triplets from crowd workers quickly becomes

intractable for larger datasets. For this reason, a few research groups have pro-

posed more intelligent sampling techniques [63, 31]. However, the difficulty of

collecting a large number of triplets is also related to the time and monetary cost

of collecting data from humans. To investigate this relationship more closely, we

chose to study a triplet human intelligence task (HIT). In this work we provide

a better understanding of how the HIT design affects not only the time and cost

4



Figure 2.1: Questions of the form “Is object a more similar to b than to c?” have
been shown to be a useful way of collecting similarity comparisons from crowd
workers. Traditionally these comparsions, or triplets, would be collected with a
UI shown at the left. In this work we collect triplets using a grid of images and
ask the user to select the two most similar tasting foods to the anchor. The grid
UI, right, allows us to collect 8 triplets whereas the triplet UI, left, only yeilds a
single triplet.

of collecting triplets, but also the quality of the embedding, which is usually the

researcher’s primary concern.

Traditionally, an MTurk task designed to collect triplets would show crowd

workers three images, labeled a, b, c. The worker is then asked to select either

image b or image c, whichever looks more similar to image a. See the top of

Fig. 2.1 for an example. Although this is the most direct design to collect triplets,

it is potentially inefficient. Instead, we chose to investigate triplets collected

from a grid of images. In the grid format, a probe image—analogous to image

“a” in the triplet representation—is shown next to a grid of n images. The crowd

worker is then asked to choose the k most similar images from the grid. This

layout allows us to collect k images that are more similar to the probe image than

the remaining n − k images, yielding k(n − k) triplets with one screen to the user.

We can change the number of triplets per grid answer by varying n and k, but

this also affects the amount of effort a crowd worker must exert to answer the

question. We are not the first to realize that a grid is more efficient for collecting

triplets—such techniques were also used by [68, 63]—but we believe we are the

first to investigate more thoroughly the effectiveness of triplets collected with

5



a grid. This is important because previous authors acknowledge neither the

efficiency gain nor the potential drawbacks of the grid triplets they rely on.

This paper outlines several UI modifications that allow researchers to multi-

ply the number of triplets collected per screen for perceptual similarity learning.

We show that simple changes to the crowdsourcing UI—instead of fundamental

changes to the algorithm — can lead to much higher quality embeddings. In our

case, using our grid format allows us to collect several triplet comparisons per

screen. This leads to much faster convergence than asking one triplet question

at a time. Researchers with tight deadlines can create reasonable embeddings

with off-the-shelf algorithms and a low crowdsourcing budget by following our

guidelines.

Our contributions are:

• A set of guidelines to use when collecting similarity embeddings, with

insights on how to manage the trade-off between user burden, embedding

quality, and cost;

• A series of synthetic and human-powered experiments that prove our

methods’ effectiveness;

• Evidence that each individual triplet sampled with a grid may capture

less information than a uniformly random triplet, but that their quantity

outweighs the potential quality decrease;

• A dataset of 100 food images, ingredient annotations, and roughly 39% of

the triplet comparisons that describe it, to be made available upon publi-

cation.

6



2.2 Related Work

Perceptual similarity embeddings are useful for many tasks within the field,

such as metric learning [21], image search/exploration [20], learning semantic

clusters [24], and finding similar musical genres and artists [66, 47]. Our work

is useful to authors who wish to collect data to create such embeddings. The

common idea behind all of this work is that these authors use triplets to collect

their embeddings.

In our work, we collect human similarity measurements of images in the

form of triplets. The authors of [27] proposed an algorithm for collecting triplets

from humans as well. However in [27], the triplets that were collected did not

have a probe image. because they formulated the question differently [75] fo-

cuses on estimating user preferences from crowd sourced similarity compar-

isons. However [75] uses pairwise comparisons rather than triplets.

Our work bears much similarity to Crowd Kernel Learning [63] and Active

MDS [31]. These algorithms focus on collecting triplets one at a time, but sam-

pling the best triplets first. The idea behind these systems is that the bulk of

the information in the embedding can be captured within a very small num-

ber of triplets, since most triplets convey redundant information. For instance,

Crowd Kernel Learning [63] considers each triplet individually, modeling the

information gain learned from that triplet as a probability distribution over em-

bedding space. Active MDS [31] consider a set of triplets as a partial ranking

with respect to each object in the embedding, placing geometric constraints on

the locations where each point may lie. In our work we focus on altering UI

design to improve speed and quality of triplet collection.

7



Figure 2.2: Top: An example cuisine embedding, collected with our 16-choose-
4 grid UI strategy. This embedding cost us $5.10 to collect and used 408 screens,
but yielded 19,199 triplets. It shows good clustering behavior with desserts
gathered into the top left. The meats are close to each other, as are the salads.
Bottom: An embedding with 408 random triplets. This embedding also cost
$5.10 to collect, but the result is much dirtier, with worse separation and less
structure. Salads are strewn about the right half of the embedding and a steak
lies within the dessert area. From our experiments, we know that an embedding
of such low quality would have cost us less than $0.10 to collect using our grid
strategy.

2.3 Method

Instead of asking “Is a more similar to b or c?”, we present humans with a probe

image and ask “Mark k images that are most similar to the probe,” as in Fig. 2.1.

This way, with a grid of size n, a human can generate k · (n − k) triplets per task

unit. This kind of query allows researchers to collect more triplets with a single

screen. It allows crowd workers to avoid having to wait for multiple screens to

load, especially in cases where one or more of the images in the queried triplets

8



0

1

2

3

4

5

6

7
How often do objects appear in triplet results? (Grid 16 choose 4)

1200 1400 1600 1800 2000 2200 2400
0

5

10

15

20

25

30
(Random sampling)

Figure 2.3: Random triplets have a different distribution than grid triplets.
The top histogram shows the occurrences of each object within human answers
for “Grid 16 choose 4” triplets. The bottom histogram shows a histogram of
sampling random triplets individually. 59520 triplets were collected for both
histograms. Each object occurs in our answers about µ̂ = 1785 times, but the
variation when using grid triplets (top) is much wider (σ̂ ≈ 187.0) than the
variation when sampling triplets uniformly (bottom, σ̂ = 35.5). This effect is
not recognized in the literature by authors who use grids to collect triplets. We
study its impact in our experiments.

do not change. This also allows crowd workers to benefit from the parallelism

in the low-level human visual system [72]. Since many of these observations

involve human issues, we conclude that the right way of measuring embedding

quality is with respect to human cost rather than the number of triplets. This

human cost is related to the time it takes crowd workers to complete a task and

the pay rate of a completed task. Some authors [68, 63] already incorporate

these ideas into their work but do not quantify the improvement. Our goal is to

formalize their intuitive notions into hard guidelines.

It is important to note that the distribution of grid triplets is not uniformly ran-

dom, even when the grid entries are selected randomly and even with perfect

answers. To our knowledge, no authors that use grids acknowledge this poten-

9



103 104 105 106 107

Number of triplets

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Leave-1-out NN error

Grid 12, choose 3

Grid 12, choose 4

Grid 12, choose 5

Grid 12, choose 6

Random triplets

103 104 105 106 107

Number of triplets

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Constraint Error

Grid 12, choose 3

Grid 12, choose 4

Grid 12, choose 5

Grid 12, choose 6

Random triplets

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of screens

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Leave-1-out NN error

Grid 12, choose 3

Grid 12, choose 4

Grid 12, choose 5

Grid 12, choose 6

Random triplets

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of screens

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Constraint Error

Grid 12, choose 3

Grid 12, choose 4

Grid 12, choose 5

Grid 12, choose 6

Random triplets

Music dataset, 20 dimensions

Figure 2.4: Over the course of a synthetic experiment, we collect triplets, either
randomly one at a time (thick black line) or in batches using our grid UI (col-
ored lines). When the embedding quality is viewed as the number of triplets
gathered (top two graphs), it appears that sampling random triplets one at a
time yields a better embedding. However, when viewed as a function of human
effort, grid triplets create embeddings that converge much faster than individu-
ally sampled triplets. Here, quantity outweighs quality as measured by Leave-
One-Out NN Error (left graphs) and Triplet Generalization Error (right graphs).
See text for details.

tial bias even though it deteriorates each triplet’s quality, as we will show in our

experiments. Figure 2.3 shows a histogram of how many times each object oc-

curs in our triplet answers. When using grid sampling, some objects can occur

far more often than others, suggesting that the quality of certain objects’ place-

ment within the recovered embedding may be better than others. The effect is

less pronounced in random triplets, where objects appear with roughly equal

frequency. This observation is important to keep in mind because the unequal

distribution influences the result.

10



2.4 Synthetic Experiments

We aimed to answer two questions: Are the triplets acquired from a grid of lower

quality than triplets acquired one by one? Second, even if grid triplets are lower quality,

does their quantity outweigh that effect? To find out, we ran synthetic “Mechani-

cal Turk-like” experiments on synthetic workers. For each question, we show

a probe and a grid of n objects. The synthetic workers use Euclidean distance

within a groundtruth embedding to choose k grid choices that are most similar

to the probe. As a baseline, we randomly sample triplet comparisons from the

groundtruth embedding using the same Euclidean distance metric. After col-

lecting the test triplets,we build a query embedding with t-STE [66] and com-

pare this embedding to the groundtruth. This way, we can measure the quality

of our embedding with respect to the total amount of human effort, which is the

number of worker tasks. This is not a perfect proxy for human behavior, but

it does let us validate our approach, and should be considered in conjunction

with the actual human experiments that are described later.

Datasets. We evaluated our UI paradigm on three datasets. First, we used

MNIST1k, a handwritten digit dataset containing 1,000 random digits across 10

classes. To generate groundtruth comparison triplets, we use Euclidean distance

between feature vectors. Second, we use the music similarity dataset from [66]

as a point of comparison. This set contains 9,107 human-collected triplets for

412 artists. Finally, we present results on a subset of LFW [29], the Labeled

Faces in the Wild dataset. We considered identities that have between 32 and

77 images in the set, using the face attribute vectors extracted by [39]. This

leaves us with a total of 938 73-dimensional feature vectors from 20 identities. To

generate groundtruth triplets, we again considered Euclidean distance. These

11



three datasets provide us with a healthy balance of synthetic and real-world

nonvectorial data.

Metrics. Our goal is not to build a competitive face or written digit recog-

nizer; rather, we simply wish to evaluate the quality of a perceptual embedding

constructed with the help of synthetic workers. To do this, we evaluate each

embedding’s quality using two metrics from [66]: Triplet Generalization Error,

which counts the fraction of the groundtruth embedding’s triplet constraints

that are violated by the recovered embedding; and Leave-One-Out Nearest

Neighbor error, which measures the percentage of points that share a category

label with their closest neighbor within the recovered embedding. As pointed

out by [66], these metrics measure different things: Triplet Generalization Error

measures the triplet generator UI’s ability to generalize to unseen constraints,

while NN Leave-One-Out error reveals how well the embedding models the

(hidden) human perceptual similarity distance function. We use these metrics

to test the impact that different UIs have on embedding quality.

Results. Across all three datasets, our experiments show that even though

triplets acquired via the grid converge faster than random triplets, each individ-

ual grid triplet is of lower quality than an individual random triplet. Figure 2.4

shows how the music dataset embedding quality converges with respect to the

number of triplets. If triplets are sampled one at a time (top two graphs), ran-

dom triplets converge much faster on both quality metrics than triplets acquired

via grid questions. However, this metric does not reveal the full story because

grid triplets can acquire several triplets at once. When viewed with respect to

the number of screens (human task units), as in the bottom two graphs in Fig-

ure 2.4, we now see that the grid triplets can converge far faster than random

12



with respect to the total amount of human work. This leads us to conclude that

“quality of the embedding wrt. number of triplets” is the wrong metric to op-

timize because framing the question in terms of triplets gives researchers the

wrong idea about how fast their embeddings converge. A researcher who only

considers the inferior performance of grid triplets on the “per-triplet” metric

will prefer sampling triplets individually, but they could achieve much better

accuracy using grid sampling even in spite of the reduced quality of each in-

dividual triplet, and as we shall see in our human experiments, this translates

into decreased cost for the researcher. In other words, efficient collection UIs are

better than random sampling, even though each triplet gathered using such UIs

does not contain as much information.

Why does this happen? In all cases, the 12 images within the grid were cho-

sen randomly; intuitively, we expect a uniform distribution of triplets. How-

ever, because certain objects are more likely than others to be within each grid’s

“Near” set, certain objects will appear in the triplet more often than others. This

leads to a nonuniform distribution of correct triplets, as shown in Fig. 2.3. Here,

we can see that the non-uniformity creates a difference in performance.

The other two datasets—MNIST and Face—show very similar results so we

do not report them here. In all cases, any size of grid UI outperforms random

selection. However, we do see a small spread of quality across different grid

sizes. As in the music dataset, the error is lowest when we force our synthetic

workers to select 3 close images out of 12 as opposed to selecting the 4, 5, or

6 closest images. This difference is more pronounced in the “Leave-One-Out

NN” metric. This could be because selecting the 3 closest images allows the

metric to be more precise about that image’s location in the embedding since

13



it is compared to fewer neighbors. Our synthetic workers always give perfect

answers; we do not expect imperfect humans to reflect this effect.

Figure 2.5: Example images from our dataset. The images in our dataset span a
wide range of foods and imaging conditions. The dataset as well as the collected
triplets will be made available upon publication.

2.5 Human Experiments

These synthetic experiments validate our approach, but they have several prob-

lems. In particular, there is no reason why humans would behave similarly to

a proxy oracle as described above. Further, we must also consider the effort of

our workers, both in terms of the time it takes to complete each task and how

much money they can make per hour—metrics that are impossible to gather

via synthetic means. To verify that these approaches build better embeddings

even when humans provide inconsistent triplets, we ran Mechanical Turk ex-

periments on a set of 100 food images sourced from Yummly recipes with no

groundtruth. The images were filtered so that each image contained roughly

one entree. For example, we avoided images of sandwiches with soups. Exam-

ple images are shown in Fig. 2.5. For each experiment, we allocated the same

amount of money for each hit, allowing us to quantify embedding quality with

14



4 8 12 16

Grid size

0

2

4

6

8

10

12

14

S
e
co

n
d
s

Timing tasks

Choose 4

Choose 2

Choose 1

Figure 2.6: We show the median time that it takes a human to answer one grid.
The time per each task increases with a higher grid size (more time spent look-
ing at the results) and with a higher required number of near answers (which
means more clicks per task). Error bars are 25 and 75-percentile.

respect to cost. Upon publication, the dataset as well as the collected triplets

will be available for download.

Design. For each task, we show a random probe and a grid of n random

foods. We ask the user to select the k objects that “taste most similar” to the

probe. We varied n across (4, 8, 12, 16) and varied k across (1, 2, 4). We ran three

independent repetitions of each experiment. We paid $0.10 per HIT, which in-

cludes 8 usable grid screens and 2 catch trials. To evaluate the quality of the

embedding returned by each grid size, we use the same “Triplet Generaliza-

tion Error” as in our synthetic experiments: we gather all triplets from all grid

sizes and construct a reference embedding via t-STE. Then, to evaluate a set of

triplets, we construct a target embedding, and count how many of the refer-

ence embedding’s constraints are violated by the target embedding. Varying

the number of HITs shows how fast the embedding’s quality converges.

Baseline. Since we wish to show that grid triplets produce better-quality em-

15



102 103 104

Number of triplets

0.1

0.2

0.3

0.4

0.5

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Grid 4 choose 2

Grid 8 choose 4

Grid 12 choose 4

Grid 16 choose 4

Random triplets

CKL

$0.00 $1.00 $2.00 $3.00 $4.00 $5.00

Total cost ($)

0.1

0.2

0.3

0.4

0.5

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Grid 4 choose 2

Grid 8 choose 4

Grid 12 choose 4

Grid 16 choose 4

Random triplets

CKL

Human experiments on foods, 5 dimensional

Figure 2.7: Results of our human experiments on the food dataset. Left graph:
Triplet generalization error when viewed with respect to the total number of
triplets. Right: The same metric when viewed with respect to the total cost (to
us) of constructing each embedding. The left graph implies that a randomly-
sampled embedding appears to converge faster. However, when quality is
viewed with respect to cost, we find that an embedding generated using a 16-
choose-4 grid cost $0.75, while an embedding with random triplets of similar
quality costs $5.00. It is clear that the grid UI saves money; in this case, by over
a factor of 6.

beddings at the same cost as random triplets, we should collect random (a, b, c)

comparisons from our crowd workers for comparison. Unfortunately, collect-

ing all comparisons one at a time is infeasible (see our “Cost” results below), so

instead, we construct a groundtruth embedding from all grid triplets and uni-

formly sample random constraints from the embedding. This is unlikely to lead

to much bias because we were able to collect 39% of the possible unique triplets,

meaning that t-STE only has to generalize to constraints that are likely to be

redundant. All evaluations are performed relative to this reference embedding.

2.5.1 Results

Two example embeddings are shown in Fig. 2.2.

Cost. Across all experiments, we collected 14,088 grids, yielding 189,519

16



unique triplets. Collecting this data cost us $158.30, but sampling this many

random triplets one at a time would have cost us $2,627.63, which is far out-

side our budget1. If we had used the 16-choose-4 grid strategy (which yields

48 triplets per grid), we would be able to sample all unique triplets for about

$140—a feat that would cost us $6737.50 by sampling one at a time.

Grid n choose k Error at $1 Time/screen (s) Wages ($/hr)
n: 4, k: 1 0.468 3.57 $10.09

k: 2 0.369 3.45 $10.45
n: 8, k: 1 0.400 3.04 $11.85

k: 2 0.311 5.79 $6.22
k: 4 0.273 7.65 $4.71

n: 12, k: 1 0.406 4.17 $8.64
k: 2 0.294 6.78 $5.31
k: 4 0.235 8.67 $4.15

n: 16, k: 1 0.413 6.72 $5.36
k: 2 0.278 8.84 $4.07
k: 4 0.231 9.59 $3.76

Random 0.477 – –
CKL 0.403 – –

Table 2.1: Results of our actual Mechanical Turk experiments. We ask workers
to choose the k most similar objects from a grid of n images. We invest $1 worth
of questions, giving us 100 grid selections. When n and k are large, each answer
yields more triplets. Large grids require more time to complete, but many of
our tasks (bold) still pay a respectable wage of more than $6 per hour.

Quality. As we spend more money, we collect more triplets, allowing t-STE

to do a better job generalizing to unseen redundant constraints. All embeddings

converge to lower error when given more triplets, but this convergence is not

monotonic because humans are fallible and there is randomness in the embed-

ding construction. See Fig. 2.7 for a graphical comparison of grids with size

4,8,12, and 16. When viewed with respect to the number of triplets, random

triplets again come out ahead; but when viewed with respect to cost, the largest

1There are 100 · 99 · 98/2 = 485, 100 possible unique triplets and each triplet answer would
cost one cent. We additionally need to allocate 10% to Amazon’s cut and 20% of our tasks are
devoted to catch trials.

17



grid converges more quickly than others, and even the smallest grid handily

outperforms random triplet sampling.

This time, we observe a large separation between the performance of vari-

ous grid sizes. Grid 16-choose-4, which yields 4 · 12 = 48 triplets per answer,

uniformly outperforms the rest, with Grid 12-choose-4 (at 4 · 8 = 32 triplets per

answer) close behind. Both of these outperform 8-choose-4 (16 triplets/answer)

and 4-choose-2 (4 triplets/answer).

We also compare our performance with the adaptive triplet sampling strat-

egy of [63]. CKL picks triplets one-at-a-time but attempts to select the best triplet

possible to ask by maximizing the information gain from each answer. In our

experiments, it did not outperform random sampling; further analysis will be

future work.

Though catch trials comprised 20% of the grid answers we collected, we

found that the results were generally of such high quality that no filtering or

qualification was required.

Time. Fig. 2.6 shows how fast each human takes to answer one grid question.

Our smallest task was completed in 3.5 seconds ( ), but even our largest grid

(16 choose 4) can be completed in less than 10 seconds. Times varies widely

between workers: our fastest worker answered 800 questions in an average of

2.1 seconds per grid task for 8-choose-1 grids.

Worker Satisfaction. At our standard 1c|-per-grid/$0.10-per-HIT rate, our

workers are able to make a respectable income, shown in Tab. 2.1. The smallest

tasks net more than $10/hour by median, but even our largest task allows half

of our workers to make $3.76 for every hour they spend. If the fastest, most

18



skilled worker sustained their average pace in 8-choose-1 grids, they could earn

over $17 per hour.

Since there is a trade-off between grid size and worker income, it is impor-

tant to consider just how far we can push our workers without stepping over

the acceptable boundaries. Across all of our experiments, we received no com-

plaints, and our tasks were featured on multiple HIT aggregators including

Reddit’s HitsWorthTurkingFor subreddit and the “TurkerNation” forums

as examples of bountiful HITs. Our workers did not feel exploited.

According to the HitsWorthTurkingFor FAQ 2, “the general rule of

thumb . . . is a minimum of $6/hour.” Though HITs below this amount may be

completed, the best workers may pass for more lucrative HITs. Being featured

in forums such as HitsWorthTurkingFor gave us an advantage since our hit

was visible to a very large audience of potential skilled turkers. Though high

payouts mean higher cost, in our case, the benefit outweighed the drawback.

2.6 Guidelines and conclusion

Throughout this paper, we have shown that taking advantage of simple batch

UI tricks can save researchers significant amounts of money when gathering

crowdsourced perceptual similarity data. Our recommendations can be sum-

marized as follows:

• Rather than collecting comparisons one-at-a-time, researchers should use

a grid to sample comparisons in batch, or should use some other UI

2http://reddit.com/r/HITsWorthTurkingFor/wiki/index

19



paradigm appropriate to their task. However, researchers should not as-

sume that such “batch” comparisons are of identical quality to uniformly

random sampling—this is a trade-off that should be considered.

• If cost is an issue, researchers should quantify their results with respect

to dollars spent. We found that using our simple UI paradigm can creates

embeddings of higher quality than those created using algorithms that

pick the best triplet one-at-a-time.

• Researchers should continuously monitor the human effort of their

tasks, so that they can calculate an appropriate target wage and stand a

better chance of being featured on “Good HIT” lists and be seen by more

skilled Turkers.

• When using grids to collect triplets, researchers should consider the trade-

off between size and effort. Consider that an n-choose-k grid can yield

k(n − k) (2.1)

triplets per answer. Since this has a global maximum at n = 2k, one appro-

priate strategy is to select the largest n that yields a wage of $6/hour and

set k equal to n/2.

There are several opportunities for future work. First, we should better

quantify the relationship between n, k, and task completion time to build a more

accurate model of human performance. Second, we should continue investigat-

ing triplet sampling algorithms such as “CKL” as there may be opportunities to

adaptively select grids to converge faster than random, giving us advantages of

both strategies.

20



2.7 Acknowledgments

We especially thank Jan Jakeš, Tomas Matera, and Edward Cheng for their soft-

ware tools that helped us collect grid triplets so quickly. We also thank Vi-

cente Malave for helpful discussions. This work was partially supported by an

NSF Graduate Research Fellowship award (NSF DGE-1144153, Author 1) and a

Google Focused Research award (Author 3).

21



CHAPTER 3

LEARNING CONCEPT EMBEDDINGS WITH COMBINED

HUMAN-MACHINE EXPERTISE

3.1 Introduction

Supervised learning tasks form the backbone of many state-of-the-art computer

vision applications. They help researchers classify, localize, and characterize ac-

tions and objects. However, if the researcher’s goal is instead to interactively

explore the latent structure of a dataset, discover novel categories, or find la-

beling mistakes, it is unclear what kind of supervision to use. Sometimes the

data does not fall into well-defined taxonomic categories, or perhaps it is simply

too expensive to collect labels for every object. Sometimes the expert wishes to

capture a concept—some intuitive constraint that they cannot articulate—about

how the data should be structured, but does not have the time to specify this

concept formally. If we wish to build models that capture concepts, we need a

new approach.

Our overall goal is to generate a concept embedding. Distances within this

space should correspond with a human’s intuitive idea of how similar two ob-

jects are. Many researchers use similar embeddings to enhance the performance

of classifiers [61, 11, 68], build retrieval systems [66, 47], and create visualiza-

tions that help experts better understand high-dimensional spaces [15, 14].

Concepts cannot always be inferred from appearance. Within the past few

years, huge research advances have begun to produce systems that are excellent

at comparing images based on visual cues. For example, one can imagine build-

22



Figure 3.1: Our SNaCK embeddings capture human expertise with the help of
machine similarity kernels. For example, an expert can use this concept em-
bedding of a subset of CUB-200 to quickly find labeling mistakes. Red-headed
Woodpeckers are visually dissimilar to Pileated Woodpeckers, but SNaCK
moved a Red-headed Woodpecker into the Pileated Woodpecker cluster be-
cause of its appearance. This is probably a labeling mistake in CUB-200, and
this SNaCK embedding helped us discover it. The cluster of three visually
similar vireo species in the embedding center may be another good place to
look for label problems.

ing a CNN to compare food dishes based solely on their appearance. However,

if the concept we wish to capture is similarity in taste, the task becomes harder.

Although taste and appearance are often correlated, any poor diner who has

confused guacamole and wasabi knows that foods that taste very different may

look deceptively similar because the strongest visual cues may not be reliable.

This particular taste difference is difficult to capture without expert guidance.

Similarly, when classifying birds, the goal is often not to group similar-looking

birds together, but to group birds of the same species together. Experts know

23



that appearance is important for this classification task, but there are often large

visual differences between the appearance of male and female birds of the same

species or between juveniles and adults. In these cases, domain-specific exper-

tise can greatly improve the resulting embedding.

Expert annotations can be expensive to collect. In order to capture abstract

concepts known only by humans, the expert must provide hints [1] to help guide

the learning process. Unfortunately, asking experts to exhaustively and author-

itatively annotate the dataset is not always possible [4]. Further, hints are most

useful when they are task-specific [14]: if the user wishes to discover some re-

lationship that is not apparent between objects, they should be able to specify

whatever hints they feel would best capture those constraints. Previous work

that uses perceptual annotations [66, 71] note that collecting all hints based on

relative similarity comparisons can take quadratic or cubic cost. Hiring actual

domain experts is often out of the question, and even crowdsourcing websites

such as Mechanical Turk can be prohibitively expensive.

It seems reasonable that one can use machine kernels to speed up the pro-

cess of collecting hints. In this work, we show how to overcome the inherent

human scalability problems by using human hints to refine a concept embed-

ding generated by an automatic similarity kernel. Our main contributions are

as follows:

• We present a novel algorithm, “SNE-and-Crowd-Kernel Embedding”

(SNaCK), that combines expert triplet hints with machine assistance to

efficiently generate concept embeddings;

• We show how to use our SNaCK embeddings for tasks such as visualiza-

tion, concept labeling, and perceptual organization, and show that SNaCK

24



Figure 3.2: Overview of our SNE-and-Crowd-Kernel (“SNaCK”) embedding
method. As input, SNaCK accepts a dataset of objects, a similarity kernel K,
and a set of expert constraints in the form of “Object i should be closer to j than
it is to k”, which may be inferred from crowdsourcing or label information. The
output is a low-dimensional concept embedding that satisfies the expert hints
while preserving the structure of K.

embeddings are competitive with the state of the art in these tasks.

We also present the following minor contributions:

• A dataset of 950,000 crowdsourced perceptual similarity annotations on

10,000 food dishes from Yummly;

• A deep-learned food classifier that greatly improves upon the previous

state-of-the-art performance on the Food-101 dataset [9];

• A proof that two perceptual embedding algorithms in common use, CKL

and t-STE, are equivalent for the common 2D case for certain parameter

settings. To our knowledge, this connection has never been acknowledged

or explored before.

25



3.2 Background and related work

Perceptual embeddings. Our work builds upon a large body of existing per-

ceptual embedding literature. Notably, our method combines aspects of both t-

Distributed Stochastic Neighbor Embedding (t-SNE, from [65]) and Stochastic Triplet

Embedding (t-STE, from [66]). The objective and motivation behind these ap-

proaches are fundamentally different: t-SNE creates a low-dimensional visual-

ization using an automatic kernel from a higher-dimensional space and t-STE

generates an embedding from scratch that satisfies as many human-provided

similarity constraints as possible. Nevertheless, we show that they are comple-

mentary. Interestingly, there is a strong mathematical similarity between t-STE

and the Crowd Kernel Learning (CKL) method described in [63]; in fact, in the

supplementary material, we show that CKL and t-STE are equivalent for certain

parameter choices. To our knowledge, this connection has not been explored

before.

Triplet constraints and other kinds of hints. In our work, we use triplet

constraints, where the crowd or the expert provides tuples of the form (i, j, k)

to indicate that object i seems more similar to object j than i does to object k.

We take these constraints to mean that object i should thus be closer to object

j than i is to k in the desired concept embedding. These relative comparisons

allow the expert to directly specify perceptual constraints about objects. When

compared to other forms of supervision, triplets are one of the most flexible

options in practical use because they do not rely on a priori knowledge, are in-

variant to scale, and are stable between and within subjects. Consider other

forms of supervision: placing objects into category labels may not map to the ab-

stract concepts the expert wishes to capture and it requires the entire taxonomy

26



to be known up-front. Even with unlimited time and a patient expert, the la-

bel results may be subject to scrutiny: one human expert solving the ImageNet

Large Scale Visual Recognition Challenge [59] took approximately a minute to

label each image and still made 5.1% error. The CUB-200 [67] dataset also has

labeling errors, which we will show in Sec. 3.4.1.

Pairwise similarity judgments are another common form of supervision, but

they have own problems. The classic 7-point Likert scale induces quanti-

zation into the metric and may not be reliable between people. Several re-

searchers [49, 35, 15] note that methods based on triplet comparisons are more

stable than such pairwise measures. In an experiment comparing the speed

and effectiveness of pairwise, triplet, and spatial arrangement embeddings, [15]

found that triplet comparisons yield the least variance of human perceptual sim-

ilarity judgments than other methods, though triplet tasks also took humans the

longest to complete. One disadvantage of triplet constraints is that triplet em-

beddings require at least O(n3) triplet constraints to be uniquely specified [36],

even though many triplets are strongly correlated and do not contribute much

to the overall structure [61]. This is why we propose using a machine vision

system to do most of the heavy lifting and reduce the number of required triplet

constraints.

Incorporating human judgments in automatic systems. Of course, we are

not the first researchers to show the benefits of combining human and machine

expertise. For example, [11, 68] build a classification system by bringing hu-

mans “into the loop” at runtime. Other work allows humans to specify an

attribute relationship to influence the label training [7]. These approaches are

most useful when classification is the end goal rather than visualization or per-

27



ceptual organization. Another branch of work starts from an automatically-

generated distance matrix and uses human constraints to further refine the re-

covered clustering or distance metric, typically by asking the human to provide

pairwise “Must-link” or “Must-not-link” constraints [46, 74, 76, 64, 77]. In some

works, the human can provide an attribute explanation for their choice [40]. In

Sec. 3.4.1, we show that our approach is competitive with many of these con-

strained clustering algorithms in a semi-supervised labeling task.

Other particularly relevant contributions re-cast t-STE as a multiple metric

learning problem [79]. Here, the humans are asked to evaluate multiple aspects

of objects’ similarity (eg. similarity of different parts), and the final embedding

is learned to jointly satisfy as many aspects as possible. Similarly, [3] learns mul-

tiple maps from a single set of triplet questions. Our work is similar in spirit, but

our focus on jointly learning both human and machine-judged similarity rather

than just multiple aspects of human similarity sets us apart from these works

and others such as [24], which focus on creating more efficient user interfaces to

gather data from crowdsourcing without using machine vision to accelerate the

process.

Embeddings from deep learning and Siamese networks. Finally, an inter-

esting branch of work revolves around teaching CNNs to satisfy triplet ques-

tions as part of the overall pipeline [69, 73]. One method based on this approach

currently holds the state-of-the-art accuracy on the LFW face verification chal-

lenge [61]. Methods like this are very appealing if one wishes to build a classi-

fier. Other methods [25] train Siamese networks on pairwise distance matrices

to output the embedding directly. Though our work does use deep learning as

part of our pipeline, deep learning is not necessary for our approach.

28



3.3 “SNE-and-Crowd-Kernel” (SNaCK) embeddings

Our hybrid embedding algorithm, SNE-and-Crowd-Kernel (SNaCK), jointly op-

timizes the objective functions of two different low-dimensional embedding al-

gorithms.1 The first algorithm, t-SNE (t-Distributed Stochastic Neighbor Embed-

ding [65]), uses a distance matrix to construct a low-dimensional embedding. Its

goal is to ensure that objects which are close in the original high-dimensional

space are also close in the low-dimensional output without constraining points

that are far in the original space. The second method, t-STE (Stochastic Triplet

Embedding [66]), allows experts to supply triplet constraints that draw from their

domain knowledge and task-specific hints. We will show that this surprisingly

simple joint optimization can capture the benefits of both objectives. See Fig. 3.2

for an overview.

3.3.1 Formulation

Consider N objects. We wish to produce a d-dimensional embedding Y ∈ RN×d.

Let K ∈ RN×N be a distance matrix, and let T = {t1, . . . , tM} be a set of triplet

constraints. Each constraint t` = (i, j, k) implies that in the final embedding,

object i should be closer to object j than it is to k, meaning ‖yi − y j‖
2 ≤ ‖yi −

yk‖
2. According to [65], the loss function for t-SNE can be interpreted as finding

the low-dimensional distribution of points that maximizes the information gain

from the original high-dimensional space.

CtS NE =
∑
i, j

pi j log
pi j

qi j
, (3.1)

1Our code is available on the companion website, http://vision.cornell.edu/se3/
projects/concept-embeddings

29

http://vision.cornell.edu/se3/projects/concept-embeddings
http://vision.cornell.edu/se3/projects/concept-embeddings


where

p j|i =
exp(−K2

i j/2σ
2
i )∑

k,i exp(−K2
ik/2σ

2
i )

(3.2)

pi j =
1

2N
(p j|i + pi| j) (3.3)

qi j =
(1 + ‖yi − y j‖

2)−1∑
k,l(1 + ‖yk − yl‖

2)−1 (3.4)

and σi is chosen to satisfy certain perplexity constraints.

The loss function for t-STE, given in [66], can be interpreted as the joint prob-

ability of independently satisfying all triplet constraints. It is defined as

CtS T E =
∑

(i, j,k)∈T

log ptS T E
(i, j,k), (3.5)

where

ptS T E
(i, j,k) =

(
1 + ‖yi−y j‖

2

α

)− 1+α
2

(
1 + ‖yi−y j‖2

α

)− 1+α
2
+

(
1 + ‖yi−yk‖2

α

)− 1+α
2

(3.6)

Interestingly, when α = 1 (as suggested in [66] for two-dimensional visualiza-

tions), CtS T E becomes a special case of the cost function CCKL from [63] for certain

parameter choices. We explore this relationship in the supplementary material.

Because they are equivalent, we use CtS T E in our cost function, defined as

CS NaCK = λ ·CtS T E + (1 − λ) ·CtS NE (3.7)

To optimize this cost, we use gradient descent on ∂CS NaCK
∂Y . Our implementa-

tion derives from the t-SNE implementation in scikit-learn, so we inherit

their optimization strategy. In particular, we use t-SNE’s early exaggeration [65]

heuristic for 100 iterations and then continue until the 300th iteration.

The λ parameter specifies the relative contribution of the machine-computed

kernel and the human-provided triplet constraints on the final embedding. For

30



each experiment, we pick λ up front such that the norm of δCtS T E
δY is approximately

equal to δCtS NE
δY in cross validation.

3.3.2 SNaCK example: MNIST

To briefly illustrate why this formulation is better than t-STE or t-SNE alone,

Fig. 3.3 shows a toy example on MNIST data. In this example, suppose the ex-

pert wishes to capture the concept of primality by partitioning the dataset into

prime numbers {2, 3, 5, 7}, composite numbers {4, 6, 8, 9} and {0, 1}. Also, for the

purpose of this simple example, assume that rather than labeling the digits di-

rectly, the expert compares images based on concept similarity, i.e., primes are

more similar to primes than to other images. By running t-SNE on flattened

pixel intensities, Fig. 3.3 (A) illustrates that the embedding does a reasonable

job of clustering numbers by their label but clearly cannot understand primality

because this concept is not apparent from visual appearance. To compensate,

we sample triplet constraints of the form (i, j, k) where i and j share the same

concept and k does not. However, we only sample 1,000 constraints for these

2,000 images. t-STE (B) attempts to discover the differences between the num-

bers in a “blind” fashion, but since it cannot take advantage of any visual cues,

the underconstrained points are effectively random. If given many more con-

straints, eventually t-STE can only collapse everything into three points for each

of the three abstract concepts. Our SNaCK embedding (C) displays the desired

high-level concept grouping into primes/non-primes/others, and it can capture

the structure of each class. Points with too few constraints are corrected by the

t-SNE loss and the t-STE loss captures the appropriate structure.

31



Figure 3.3: A simple MNIST example to illustrate the advantages of SNaCK’s
formulation. Suppose an expert wishes to group MNIST by some property that
is not visually apparent, in this case: prime, composite or {0, 1}. (A) shows t-
SNE on 2,000 MNIST digits using flattened pixel intensities. (B) shows t-STE on
1,000 triplets of the form (i, j, k), where i and j share the same concept but k does
not. (C) shows a SNaCK embedding using the same flattened pixel intensities
and the same triplet constraints. The SNaCK embedding is the only one that
captures the intra-class structure from (A) and the desired abstract grouping of
(B). See 3.3.2 for details.

3.4 Experiments

Our MNIST example demonstrates SNaCK’s utility in a domain where concepts

can be derived from category labels and everything is known a priori. How does

SNaCK perform on domains where a fixed taxonomy or fixed category labels

are not necessarily known up front? To explore this question, we perform a

series of experiments: first, we showcase SNaCK’s ability to help label a subset

of CUB-200 in a semi-supervised fashion. In this setting, SNaCK learns concepts

that are equivalent to category labels and outperforms other semi-supervised

learning algorithms. Second, our experiments on a dataset of 10,000 unlabeled

food images demonstrate SNaCK’s ability to capture the concept of food taste

using crowdsourcing. We evaluate the embedding’s generalization error on a

held-out set of crowdsourced triplet constraints. Finally, we showcase SNaCK’s

ability to embed a set of pictographic characters, showing how an expert can

32



interactively explore and refine the structure of an embedding where no prior

knowledge is available.

3.4.1 Incrementally labeling CUB-200-2011

In this scenario, we show how SNaCK embeddings can help experts label a new

dataset. Suppose an expert has a large dataset with category annotations and an

unlabeled smaller set containing new classes similar to those they already know.

The expert wishes to use their extensive preexisting knowledge to quickly label

the new set with a minimum amount of human effort. Our goal is to show that

SNaCK allows the expert to collect high-quality labels more quickly than other

methods. Here, the “concepts” we learn are equivalent to category labels. These

experiments are inspired by [41]. See Fig. 3.4.

Figure 3.4: Experiment overview on CUB-200. See text for details.

Dataset. For this task, we use the “Caltech-UCSD Birds 200-2011” (CUB-

200) dataset [67]. We assume the expert has access to all images and labels of

186 classes in the dataset (to train a machine kernel) and wishes to quickly label

a testing set of 14 classes of woodpeckers and vireos. This subset contains 776

images and was defined in [19]. We only use profile-view bird images where

a single eye and the beak is visible. Images are rotated, scaled, and possibly

flipped so the eye is on the left side of the image and the beak is on the right side;

33



part locations are collected using crowdsourcing. The image is then cropped to

the head. This is the same normalization strategy as [10].

Automatic similarity kernel. To generate K, we fine-tune a CNN to a clas-

sification task on all images in the 186 known classes. This allows the expert

to leverage their extensive pre-existing dataset to speed up label collection for

the novel classes. Our network is a variation of the “Network-in-Network”

model [42], which takes cropped normalized bird heads as input and outputs

a 186-dimensional classification result. We started from the pre-trained Ima-

geNet model in the Caffe model zoo [32] and fine-tuned the network for 20,000

iterations on an Amazon EC2 GPU instance. To do this, we replaced the last

layer with a 186-class output and reduced the learning rate for the other lay-

ers to a tenth of the previous value.2 Finally, KCNN
i, j is the Euclidean distance

between features in the final layer before softmax. To evaluate the importance

of specialized kernels, we also compare this KCNN kernel to Euclidean distances

between pre-trained GoogLeNet [62] features, and Euclidean distance between

HOG features.

Expert constraints. To generate triplet constraints in a semi-supervised fash-

ion, we reveal the labels for n images of the dataset and sample all triplets

between these images that satisfy same/different label constraints to generate

Tn = {(i, j, k) | `i = ` j , `k,max(i, j, k) ≤ n}. This allows us to vary the amount

of expert effort required to label the novel images. Note that in this test, our

concepts to learn are equivalent to class labels, so all of our sampled constraints

are derived from ground truth. Our food experiments, described in the next sec-

tion, will demonstrate SNaCK’s ability to learn more abstract concepts captured

2When trained using the standard training/testing protocol on all of CUB-200, this kind of
model achieves 74.91% classification accuracy, which is comparable to the state-of-the-art [10].

34



from subjective human judgments.

Comparisons and metrics. To perform labeling with SNaCK, we generate an

embedding of all 776 images and use KMeans to find clusters. To evaluate, we

assign all points within each discovered cluster to their most common ground

truth label and calculate the accuracy of this assignment. See Fig. 3.6 for exam-

ple embeddings varying the number of expert label annotations. We compare

against other semi-supervised learning and constrained clustering systems: La-

bel Propagation [5], the multiclass version of the Constrained Spectral Clustering

KMeans (CSPKmeans) method described in [70], and Metric Pairwise-Constrained

KMeans (MPCKmeans) [6]. Label propagation uses KCNN and the n revealed la-

bels. The constrained clustering systems use KCNN and pairwise “Must-Link”

and “Cannot-Link” constraints as input, so we reveal n image labels and sample

all possible pairwise constraints between them. As baselines, we calculate CNN

features and try to cluster them with KMeans and spectral clustering, which

do not benefit from extra human effort. Finally, we also compare against the

cluster results of using K-Means on a t-STE embedding from the same triplet

constraints used by SNaCK.

Results are shown in Fig. 3.5. SNaCK outperforms all other algorithms, but

label propagation and MPCKMeans also perform well. CSPKmeans is eventu-

ally outpaced by naively asking the expert for image labels, perhaps because it

was designed for the two-class setting rather than our 14-class case. These ex-

periments show that t-STE benefits from an automatic machine kernel (compare

SNaCK to t-STE), but we can improve the machine kernel with a small number

of expert annotations (compare KMeans or Spectral Clustering to SNaCK).

Using a kernel that captures bird similarity well is particularly important for

35



0 100 200 300 400 500 600 700 800

Human effort: How many expert annotations?

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Fr

a
ct

io
n
 o

f 
co

rr
e
ct

ly
 l
a
b
e
le

d
 i
m

a
g
e
s

Incrementally labeling CU Birds 200, "Birdlets" set

KMeans on CNN
features

Spectral Clustering
on CNN features

Naive expert labeling,
adjusted for chance

SNaCK, CNN kernel

t-STE

MPCKMeans, CNN kernel

CSPKmeans, CNN kernel

Label Propagation,CNN kernel

SNaCK, pre-trained kernel

SNaCK, HOG kernel

Figure 3.5: Incremental labeling accuracy of several semi-supervised methods.
X axis: how many labels are revealed to each algorithm. Y axis: Dataset labeling
accuracy. Error bars show standard error of the mean (σ/

√
n) across five runs.

With 14 clusters, chance is ≈ 0.071. See Sec. 3.4.1 for details.

−40 −20 0 20 40

−40

−20

0

20

40

10 expert annotations
57.60% cluster accuracy

−40 −20 0 20 40

−40

−20

0

20

40

50 expert annotations
76.29% cluster accuracy

−40 −20 0 20 40
−50

−40

−30

−20

−10

0

10

20

30

40

200 expert annotations
89.30% cluster accuracy

Figure 3.6: Embedding examples on CUB-200 Woodpeckers and Vireos, show-
ing the “SNaCK” method with (left-to-right) 10, 50, and 200 expert label annota-
tions. Colors indicate ground truth labels. As the number of expert annotations
increases, clusters within the SNaCK embedding become more consistent.

36



this task. All of the algorithms which use KCNN generally outperform SNaCK

when using a pre-trained GoogLeNet kernel. HOG features, which use no learn-

ing, are only slightly better than naive labeling. Finally, t-STE cannot use any

visual kernel, so it can only consider the images the expert already revealed.

Sometimes the machine kernel disagrees with the expert hints. This may

happen for interesting reasons, such as mistakes in the training data. For exam-

ple, Figure 3.1 shows an instance of a Red-headed Woodpecker that was moved

into a cluster containing many Pileated Woodpeckers. Even though the human

constraints encourage this sample to lie near similarly labeled examples, this

individual looks overwhelmingly similar to a Pileated Woodpecker, so the t-

SNE loss overpowered the t-STE constraints. If the embedding is colored with

ground truth labels, this mistake shows up as a single differently-colored point

in the expected cluster, which is immediately apparent to an expert.

Discovering labels for semi-supervised classifiers

Does better incremental labeling translate into increased classification perfor-

mance? In this scenario, we extend our previous experiment: we use SNaCK

to discover labels for a training set and measure the accuracy of a simple SVM

classifier on a testing set. Our goal is to decide whether just letting an expert re-

veal n labels and training on this smaller set is better than revealing n labels and

using SNaCK to discover the rest. Will a classifier trained on many noisy, dis-

covered labels perform differently than a classifier trained on a smaller, perfect

training set?

Dataset. This task uses the same set of 14 woodpeckers and vireos from

37



CUB-200 as before, but the procedure is different. We split our set into 396 train-

ing and 380 testing images using the same train/test split as CUB-200. We then

discover labels on the training images using varying numbers of expert annota-

tions and train a linear SVM classifier on all CNN features using the discovered

labels. Finally, we report accuracy on the 380 testing images. The idea is that the

quality of the discovered labels influences the accuracy of the classifier: a poor

labeling method will cause the classifier to be trained on incorrect labels. Be-

cause all methods use the same type of classifier, we are evaluating the quality

of our discovered labels, not the classifier itself.

Comparisons. As a baseline, we compare SVM classifiers trained on SNaCK-

discovered labels to an SVM classifier trained on a smaller, better set of n correct

labels provided by expert ground truth. This corresponds to the “Naive Hu-

man Sampling” method in Fig. 3.5. We also compare baselines where the SVM

training set labels are discovered using KMeans, spectral clustering, and label

propagation.

Results are shown in Fig. 3.7. Classifiers trained on noisy labels discovered

from SNaCK embeddings significantly outperform classifiers that are trained on

smaller training sets, even though many of SNaCK’s labels are incorrect. This

is particularly true for fewer than 50 annotations. Accuracy of SNaCK, Label

Propagation, and naive label sampling saturates at about 85%, which is likely

due to the linear SVM’s limited generalization ability.

Interestingly, classification accuracy of labels discovered with MPCKMeans

does not monotonically improve with more expert annotations. This surprises

us, but Fig. 3.5 does show that MPCKmeans saturates to a smaller value in our

semi-supervised labeling experiments, indicating that it cannot perfectly satisfy

38



0 50 100 150 200 250 300 350

Expert effort: Number of labels revealed in training set

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy
 o

n
 t

e
st

in
g
 s

e
t

Semisupervised classification
CU Birds 200, "Birdlets" set

Training labels from
KMeans on CNN
features

Training labels from
Spectral Clustering
on CNN features

SNaCK
discovers training labels

Expert reveals n
training labels

Label propagation
discovers training labels

MPCKmeans discovers
training labels

Figure 3.7: Classification accuracy of a linear SVM classifier trained on labels
discovered by different methods. X axis: how many training labels are revealed
to each algorithm. Y axis: Accuracy of classifier trained with these labels on the
test set. Error bars show standard error of the mean (σ/

√
n) across five runs. See

Sec. 3.4.1 for details.

(and thus does not benefit from) additional constraints.

Using SNaCK, an expert can build a classifier that achieves 78.8% classifica-

tion accuracy by labeling 50 images (12.6% of the dataset). A standard SVM that

achieves this level of accuracy requires a training set of 95 perfectly labeled im-

ages, showing that SNaCK can cut down the expert’s work load to build training

sets for classifiers.

3.4.2 Experiments on Yummly-10k

In this scenario, we use SNaCK to generate embeddings of food dishes. The

goal is to create a concept embedding that captures the concept of taste. Two

foods should be close in this embedding if they taste similar, according to sub-

39



Figure 3.8: Left: Example SNaCK embedding on Yummly-10k, combining ex-
pertise from Kernel 2 (CNN features) and 950,000 crowdsourced triplet con-
straints. Middle/right: Close-ups of the embedding. On a large scale, SNaCK
groups major food kinds together, such as desserts, salad, and main courses.
On a small scale, each food closely resembles the taste of its neighbors. See the
supplementary material version for larger versions of this figure.

jective human judgments. This is different from the earlier bird experiments

because we can no longer rely on labels or taxonomies to help refine the embed-

ding; all expert hints must come directly from unquantified human perception

annotations. See Fig. 3.9.

Figure 3.9: Experiment Overview for Yummly-10k. See text for details.

Dataset. For this experiment, we used 10,000 food images from the Yummly

recipe web site, dubbed Yummly-10k. This data contains a variety of meals, ap-

petizers, and snacks from different cultures and styles. We filtered the images by

removing all images shorter or thinner than 300 pixels and removed all drinks

and non-edibles. As metadata, Yummly includes weak ingredients lists and the

title of the dish, but it does not include food labels.

Automatic similarity kernels. SNaCK is not specific to any specific kernel

40



representation, so we compare two kinds of similarity measures. Food Kernel 1

is a semantic similarity measure of the best matching between two foods’ ingre-

dient lists, and Food Kernel 2 is a visual similarity measure based on a convolu-

tional neural network. To create Kword2vec
i, j (Food Kernel 1), let Ii and I j be food i

and j’s ingredients lists from Yummly. Let w(·) be an ingredient’s word2vec[48]

representation, scaled to unit norm, and let cost matrix C(a, b) = w(a) · w(b) for

a ∈ Ii, b ∈ I j. Finally, let f : Ii → I j be the maximum-weight assignment between

the two ingredient lists. Then, Kword2vec
i, j = −

∑
a∈Ii

C(a, f (a)). This way, Food Kernel

1 determines foods that share many common ingredients are more similar than

foods that have many dissimilar ingredients.

To build Food Kernel 2, we fine-tuned a CNN to predict a food label. Be-

cause Yummly-10k does not have any labels, we train on the Food-101 dataset

from [9]. Similarly to our earlier bird experiments, our network is a variation

of the “Network-in-Network” model trained to classify 101 different foods. It

was trained for 20,000 iterations on an Amazon EC2 GPU instance by replacing

the last layer and reducing the learning rate. The final kernel is defined as the

Euclidean distance between these CNN features. Our CNN model provides an

excellent kernel to start from: when trained via the standard Food-101 protocol,

this model achieves rank 1 classification accuracy of 73.5%. The previous best

accuracy on this dataset is 56.40% from [9]; the best non-CNN is 50.76%. Of

course, building a good classification model is not our focus, but we report this

accuracy to show that the automatic kernel we use is effective at distinguishing

different foods.

Expert annotation. Because we want our embedding to properly capture the

concept of food taste, we collect our expert annotations directly from humans on

41



0 100000 200000 300000 400000 500000

Number of triplet constraints

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

T
ri

p
le

t 
g
e
n
e
ra

liz
a
ti

o
n
 e

rr
o
r

Triplet generalization error on Yummly-10k

SNaCK Kernel 1
(word2vec kernel)

SNaCK Kernel 2
(CNN kernel)

t-STE

Figure 3.10: Increasing the number of crowdsourced triplet constraints allows
all methods to improve the embedding quality, measured as the fraction of un-
satisfied held-out triplet constraints (“triplet generalization error”). However,
SNaCK-based methods converge much more quickly than t-STE and require
less expert annotation to get a better result.

Amazon Mechanical Turk using the crowdsourcing interface of [71]. For each

screen, we show a reference food image i and a grid of 12 food images. The

human is asked to “Please select 4 food images that taste similar to the reference

food i.” We then generate all possible triplet constraints {(i, j, k), j ∈ S , k < S },

where S is the user’s selection. Each HIT has 10 screens and yields 320 triplet

constraints. In total, we collected 958,400 triplet constraints.3

Experiment design. There are no labels associated with taste in our Yummly

data, so we must use other metrics to evaluate the quality of our perceptual

embeddings. To do this, we adopt the “Triplet Generalization Error” metric

common to previous work [28, 79, 66, 71]. We split all triplet constraints into

training and testing sets and generate embeddings with varying numbers of

training triplet constraints. Triplet generalization error is defined as the fraction

3Triplets are available from the companion website, http://vision.cornell.edu/
se3/projects/concept-embeddings

42

http://vision.cornell.edu/se3/projects/concept-embeddings
http://vision.cornell.edu/se3/projects/concept-embeddings


of violated testing triplet constraints, which measures the embedding’s ability

to generalize to constraints the expert did not specify. We compare our two

SNaCK kernels to t-STE.

Results are shown in Fig. 3.10 and an example embedding is shown in

Fig. 3.8. As more triplet constraint annotations become available, all methods

produce embeddings of higher quality. SNaCK with Kernel 2 eventually con-

verges to 28% while t-STE reaches 33% error. Note that t-STE starts from ran-

dom chance (50%) because it starts with no information, while SNaCK-based

methods initially start with lower error because the Stochastic Neighbor loss on

the automatic kernel encourages an initial embedding that contains some fine-

grained information. Kernel 2 consistently outperforms Kernel 1, indicating

that in this experiment, deep-learned visual features may be a better indication

of food taste than the similarity of food ingredient lists. However, even the

“weaker” semantic ingredient information provides a much better initial kernel

than nothing at all.

3.4.3 Interactively discovering the structure of pictographic

character symbols

In this section we describe possible tools for exploring unlabeled data. We chose

to analyze a set of 887 pictographic characters, colloquially known as Emoji.

Using CNN features pre-trained on ImageNet, we can create an embedding that

does a good job of grouping visually similar Emoji together. However, if the

goal is to capture the concept of emotion within the set of Emoji, then similarity

of visual features alone may be inadequate. For example, in Fig. 3.11.A, a group

43



B

C D

A

Figure 3.11: An example GUI used to interactively explore and refine concept
embeddings. (A) shows a t-SNE embedding of Emoji using pre-trained Ima-
geNet features. The user selects a set of images (B) and indicates which ones
share the same emotion (C). For example, the user selected the smiling frog
because it has a similar emotion to the top left image. The updated SNaCK em-
bedding (D) moves smiling emoji away from unrelated images, regardless of
the artistic style of the faces. Additionally one of the highlighted fearful faces,
separate from the main cluster of faces in (A) has moved to be near faces with a
similar expression without collecting triplets between them.

of yellow faces are clustered at the upper right, but this group contains different

emotions and does not contain similar images in other artistic styles.

To interactively refine the embedding, the expert selects a reference Emoji

and drags a box around several images. The expert then indicates which of these

images share the same emotion as the reference. In the example in Fig. 3.11,

44



a smiling Emoji was selected and compared to all the Emoji in the green box

(Fig. 3.11.B). After two bounding box selections and a few minutes of work, we

are able to collect 20,000 triplets and separate many of the smiling Emoji from

the rest of the embedding. From here, we could further inspect these Emoji and

separate the emotion of laughing from smiling.

As mentioned in the MNIST experiments, the SNaCK embeddings are capa-

ble of taking advantage of visual cues when triplet information is not available.

An example of this can be seen in Fig. 3.11.D. A fearful face with glasses is

moved from the left side of embedding to be near other faces with similar ex-

pressions. SNaCK was able to do this without requiring triplets to be collected

between these faces. These examples give a brief illustration of how SNaCK can

be useful for examining unlabeled data.

3.5 Conclusion

Our SNaCK algorithm can learn concept embeddings by combining human

expertise with machine similarity. We showed that SNaCK can help experts

quickly label new sets of woodpeckers and vireos, build training sets for classi-

fiers in a semi-supervised fashion, and capture the perceptual structure of food

taste. We also presented a snapshot of a tool that can help experts interactively

explore and refine a set of pictographic characters. In the future, we will pur-

sue intelligent sampling for active learning of embeddings, and will extend our

system to explore large video datasets.

45



3.6 Acknowledgments

This work was partially supported by an NSF Graduate Research Fellowship

award (NSF DGE-1144153, Author 1), a Google Focused Research award (Au-

thor 4), and AOL-Program for Connected Experiences (Authors 1 and 4). We

also wish to thank Laurens van der Maaten and Andreas Veit for insightful dis-

cussions.

46



CHAPTER 4

BAM! THE BEHANCE ARTISTIC MEDIA DATASET FOR RECOGNITION

BEYOND PHOTOGRAPHY

“Art is an effort to create, beside the real world, a more humane world.” –

André Maurois

Recent advances in Computer Vision have yielded accuracy rivaling that of

humans on a variety of object recognition tasks. Most work in this space is

focused on understanding photographic imagery of everyday scenes. For exam-

ple, the widely-used COCO dataset [43] was created by “gathering images of

complex everyday scenes containing common objects in their natural context.”

Outside of everyday photography, there exists a diverse, relatively unexplored

space of artistic imagery, offering depictions of the world as reinterpreted through

human artwork. Besides being culturally valuable, artwork spans broad styles

that are not found in everyday photography and thus are not available to cur-

rent machine vision systems. For example, current object classifiers trained on

ImageNet and Pascal VOC are frequently unable to recognize objects when they

are depicted in artistic media (Fig. 4.1). Modeling artistic imagery can increase

the generality of computer vision models by pushing beyond the limitations of

photographic datasets.

In this work, we create a large-scale artistic style dataset from Behance,

a website containing millions of portfolios from professional and commercial

artists. Content on Behance spans several industries and fields, ranging from

creative direction to fine art to technical diagrams to graffiti to concept design.

Behance does not aim to be a historical archive of classic art; rather, we start

47



Bicycle Bird Cat Dog

Ph
ot

og
ra

ph
y

Score: 0.99 Score: 0.99 Score: 0.99 Score: 0.99

C
om

ic

Score: 0.01 Score: 0.01 Score: 0.01 Score: 0.34

Pe
nc

il

Score: 0.02 Score: 0.01 Score: 0.03 Score: 0.01

O
il

pa
in

t

Score: 0.07 Score: 0.00 Score: 0.01 Score: 0.02

V
ec

to
r

ar
t

Score: 0.00 Score: 0.01 Score: 0.01 Score: 0.01

W
at

er
co

lo
r

Score: 0.28 Score: 0.02 Score: 0.01 Score: 0.02

Figure 4.1: State of the art object detectors such as SSD trained on Pascal VOC
can reliably detect objects in everyday photographs (top row), but do not gen-
eralize to other kinds of artistic media (see scores under each image). In this
work, we create a large-scale artistic dataset spanning a breadth of styles, me-
dia, and emotions. We can use this dataset to improve the generality of object
classifiers—our object classifier’s scores are above 0.95 for all these images.

from Behance because it represents a broad cross-section of contemporary art

and design.

Our overall goal is to create a dataset that can teach machines to understand

48



and categorize artistic images in ways that are valuable to humans. This is im-

portant because existing artistic datasets are too small or are focused on clas-

sical artistic styles, ignoring the breadth of contemporary digital artwork. To

solidify the scope of the problem, we choose to explore three different facets

of high-level image categorization: object categories, artistic media, and emo-

tions. These artistic facets are attractive for several reasons: they are readily

understood by non-experts, they can describe a broad range of contemporary

artwork, and they are not apparent from current photographic datasets.

We keep the following goals in mind when deciding which attributes to an-

notate. For object categories, we wish to annotate objects that may be drawn

in many different visual styles, collecting fewer visually distinct categories but

increasing the density (instances per category) and breadth of representation.

ImageNet and COCO, for example, contain rich fine-grained object annotations,

but these objects only appear in everyday photos and thus only cover a narrow

range of artistic representation. For media attributes, we wish to annotate pic-

tures rendered with all kinds of professional media: pencil sketches, computer-

aided vector illustration, watercolor, and so on. Finally, emotion is an important

categorization facet that is relatively unexplored by current approaches.

There are several challenges, including annotating millions of images in a

scalable way, defining a categorization vocabulary that represents the style and

content of Behance, and integrating this resource into existing computer vision

systems.

Our contributions are threefold:

• A large-scale dataset, the Behance-Media Dataset, containing almost 60

49



Size Scope Annotations
A-SUN [53] 0.014m Photos of scenes Objects, context
Behance-2M (Private) [17] 1.9m Contemporary artwork User/View behavior
Recognizing Image Style [34] 0.16m Photos, paintings Art genre, photo techniques
AVA [51] 0.25m Photos Aesthetics, content, style
Visual sentiment ontology [8] 0.31m Photos, videos Adj/Noun pairs
OpenImages [37] 9.2m Photos Content labels
Behance-Media 60m Contemporary artwork Emotion, Media, Objects

Table 4.1: A comparison of several related datasets. Our Behance-Media dataset
is much larger than the others and includes a broad range of contemporary art-
work.

million images, a subset of which will be released upon publication. We

also create an expert-defined vocabulary of binary artistic attributes that

spans the broad spectrum of artistic styles and content represented in Be-

hance.

• An iterative label bootstrapping algorithm that allows us to annotate this

dataset at low cost while satisfying quality guarantees by focusing the

crowd’s attention on the most worthwhile images to label.

• An analysis of the dataset, showing how it may be used to improve gener-

ality of existing computer vision systems. We also use our dataset to teach

machines to recognize images with different styles and emotions.

We believe this dataset will provide a starting foundation for researchers who

wish to build systems that better understand artwork.

4.1 Related Work

Attributes and other mid-level representations have a long and rich history in

vision. Two seminal works that introduce attributes are the “semantic multi-

nomials” of Rasiwasia and Vasconcelos [56], which lift images into a semantic

space useful for performing visual searches, and the work by Farhadi et al. [18],

50



which use human-describable attributes to perform zero-shot learning of new

objects. Attributes have been applied to face recognition via the work of Ku-

mar et al. [39] later extended by Scheirer et al. [60] and scene understanding by

Patterson et al. [53], Redi et al. [57], and others.

Attributes have also been applied to aesthetics and other artistic qualities,

usually with a focus on photography. For instance, Obrador et al. [52], Dhar

et al. [16], and Murray et al. [51] collect descriptive attributes such as interest-

ingness, symmetry, light exposure, and depth of field. Work by Peng et al. [54]

attempts to study regions of photographs that induce a certain emotion in a

viewer. Other work such as Jou et al. [33] and Borth et al. [8] use emotions to

build ontologies of Adjective/Noun pairs to describe images.

Others describe image style in terms of low-level feature correlations as in

work done by Gatys et al. [22], Lin et al. [44], and others. The application stud-

ied in Gatys’ work is transferring texture from one image to another, but we

argue there is more to artistic style than low-level texture transfer. We are more

concerned about high-level image categorization.

Ours is not the only dataset focused on artwork. We compare related

artistic datasets in Tab. 4.1. Most are focused exclusively on everyday pho-

tographs [51, 53, 8], but some [34] include classical paintings. For example,

Crowley and Zisserman [12] studied how VOC categories appear in paintings.

Likewise, Ginosar et al. [23] discuss person detection in cubist art. The work

of Fang et al. [17] also studies Behance imagery, but does not collect descrip-

tive attributes. Recently, Google released a large-scale dataset called “Open Im-

ages” [37]. As of this writing, there is no report explaining how this dataset was

collected. Open Images contains some media-related labels including “comics”,

51



“watercolor paint”, “graffiti”, etc. but it is unclear how the quality of the label-

ing was evaluated and each of these labels contain less than 400 human-verified

images. Further, there are no labels relating to different emotions. Open Images

contains some artistic imagery, but that is not its focus. To our knowledge, our

work is the first work seeking to release a large-scale dataset of a broad range of

contemporary artwork with emotion, media, and content annotations.

Our work is most similar in spirit to Karayev et al. [34], which studies pho-

tographic image style. They collect annotations for photographic techniques,

composition, genre, and mood on Flickr images, as well as a set of classical

painting genres on Wikipaintings. Our focus is on non-photorealistic contem-

porary art, which is also covered by Fang et al. [17]. Fang et al.’s work trains a

style prediction network to predict image “pseudoclasses,” which are clusters

of images that encompass consistent styles according to user behavior. Our ap-

proach is explicit: we directly annotate semantically meaningful attributes from

that feature space.

Finally, several works [78, 38, 13] show how to use deep learning to am-

plify human effort. The design of our crowdsourced dataset collection process

is loosely based on the LSUN dataset annotation pipeline [78], which builds a

very large-scale object detection dataset using a combination of deep learning

and crowdsourcing.

4.2 The Behance Media Dataset

Our dataset is built from “Behance,” a portfolio website for professional and

commercial artists. Behance contains over ten million projects and sixty million

52



Random images from projects with tag “Cat”:

Top classifications for “Cat” tag classifier:

Figure 4.2: Top: Sampling of images within projects with the “Cat” tag. Projects
with the “Cat” tag may contain other animals (1), title cards (3,5), or unrelated
pictures (5,6). Bottom: Top classifications from a classifier trained to distinguish
the “Cat” tag. Images are more related, but this tends to learn many small ani-
mals. The precision of cats in the top 100-scoring images is only 36%.

images. Images on Behance are grouped into Projects, the fundamental unit

of categorization. Each Project is associated with metadata, including a title,

optional description, several user-supplied tags, and up to three annotations

specifying the field of the Project.

Artwork on Behance spans many fields, such as sculpture, painting, photog-

raphy, graphic design, graffiti, illustration, and advertising. Graphic design and

advertising make up roughly one third of Behance. Photography, drawings, and

illustrations make up roughly another third. This artwork is posted by profes-

sional artists to show off samples of their best work. We encourage the reader

to visit http://behance.net to get a sense of the diversity and quality of

imagery on this site. Example images from Behance are shown in Fig. 4.4.

Selecting attribute categories. In this work, we choose to annotate our own

artistic binary attributes. Attribute names are rendered in sans serif font. Our

attributes capture three categorization facets:

• Emotion attributes: We label images that are likely to make the viewer

53

http://behance.net


feel calm/peaceful, happy/cheerful, sad/gloomy, and scary/fearful.

• Media attributes: We label images created in 3D computer graphics,

comics, oil painting, pen ink, pencil sketches, vector art, and watercolor.

• Entry-level object category attributes: We label images containing bicy-

cles, birds, buildings, cars, cats, dogs, flowers, people, and trees.

We chose these attributes as follows: The four emotion attributes are seen

on Plutchik’s Wheel of Emotions [55], a well-accepted model for emotions from

the psychological literature. This model was also used in [33]. From this model,

we chose the emotions that are likely to be visually distinctive. The seven me-

dia attributes were chosen on the expert advice of a resident artist to roughly

correspond with the genres of artwork available in Behance that are easy to vi-

sually distinguish. Our goal is to strike a balance between distinctive media

while covering the broad range available in Behance. For instance, oil paint and

acrylic are considered to be different media by the artistic community, but are

very hard for the average crowd worker to distinguish visually. The content

attributes represent entry-level object categories and were chosen to have some

overlap with Pascal VOC while being representative of Behance content. We fo-

cus on entry-level categories because these categories are likely to be rendered

in a broad range of styles throughout Behance.

Although this work is only concerned with a small set of labels (arguably

a proof-of-concept), the dataset we release could itself be the basis for a real

PASCAL/COCO-sized labeling effort which requires consortium-level funding.

Tags are noisy. Behance contains user-supplied tags, and one may won-

der whether it is feasible to train attribute classifiers directly from these noisy

tags alone. This idea was previously studied in Izadinia et al. [30] and Misra et

54



al. [50]. However, unlike that work, we cannot create our dataset from tags alone

for two reasons. First, not all of our attributes have corresponding tags. Second,

tags are applied to each project, not each image. For example, even though a

project called “Animal sketches 2012” may have the “Dog” tag, we do not know

which image that tag should apply to. Training on tags alone is too noisy and

reduces the final classifier precision. As a toy experiment, Fig. 4.2 shows a sam-

pling of images from projects with the “Cat” tag, but many of these images do

not contain cats. A binary classifier trained on this tag only learns to distinguish

different small animals and is not fine-grained enough to find cats. The preci-

sion of cats among the top 100 detections is only about 36%. To increase this

accuracy, we must rely on human expertise to collect labels.

4.2.1 Crowdsourcing

Our dataset requires some level of human expertise to label, but it is too costly

to collect labels for all images. To address this issue, we use a hybrid human-

in-the-loop strategy to incrementally learn a binary classifier for each attribute.

At each step, humans label the most informative samples in the dataset. The

resulting labels are added to each classifier’s training set to improve its dis-

crimination. The classifier then ranks more images, and the most informative

images are sent to the crowd for the next iteration. After four iterations, the fi-

nal classifier re-scores the entire dataset and images that surpass a certain score

threshold are assumed to be positive. This final threshold is chosen to meet cer-

tain precision and recall targets on a held-out validation set. This entire process

is repeated for each attribute we wish to collect. Our hybrid annotation strategy

is loosely based on the LSUN dataset annotation pipeline described in [78]. An

55



Figure 4.3: A diagram of our crowdsourcing pipeline. First, we train a set of
classifiers on all labels collected so far. We then use this classifier to rank a
random sample of images. High-scoring images are sent back to the crowd,
and the resulting labels are added to the training and validation set. After four
iterations, the validation set is used to select positive and negative thresholds
with certain precision and recall targets. Images meeting these thresholds are
added to the automatic label set.

overview of this process is shown in Fig. 4.3.

The human crowdsourcing task. The heart of our human-in-the-loop sys-

tem is the actual human annotation task. We collect annotations for each at-

tribute independently. To do this, we rely on Amazon Mechanical Turk, a

crowdsourced marketplace. Crowd workers (“Turkers”) complete Human In-

telligence Tasks for a small cash payment. In each HIT for a given attribute, we

show the Turker 10 handpicked positive/negative example images and collect

50 binary image annotations. Turkers indicate whether each image has the at-

tribute of interest. Each HIT only collects labels for a single attribute at a time

to avoid confusion. For quality control, we show each image to two separate

56



Turkers and only use answers where both Turkers agree.

We also collect sparse text annotations for a subset of these images. Every

10 images, we present an annotation recently provided by the Turker and ask

for a brief 3-word caption to justify their choice. For emotion attributes, we ask

why the image might or might not make an average Turker feel that emotion;

for media attributes, we ask how the Turker knows the image was or was not

drawn with that medium; for content attributes, we merely ask what the object

of interest looks like. The Turker must write at least three words before con-

tinuing, but captions are not checked for grammar or coherence. This has the

effect of encouraging annotators to carefully consider and justify their choices.

Feedback from the Turkers indicate that they found this extra captioning task to

be annoying and to slow them down; however, it seemed to greatly increase the

quality of the provided attribute labels based on manual inspection of results.

These annotations also provide useful clues about what qualities workers

use to describe style. The words that maximize TF/IDF scores among positive

annotations are informative: workers tend to use nouns when describing object

categories (such as “bouquet”, “rose”, “petal”, “vase” for Flower) and visual ad-

jectives when describing media and emotion (such as “translucent”, “frayed”,

“blotchy”, “bleeding”, “overlap” for Watercolor). The supplementary material

contains more examples of informative words. These annotations will be re-

leased alongside the final dataset.

It is always important to balance the trade-off between squeezing high-

quality work out of annotators while being respectful of their effort and abilities.

The subjectivity of our task makes this trade-off harder to manage. Beyond oc-

casionally asking Turkers for justification, we did not feel a need to force them

57



to surpass accuracy thresholds on “gold standard” tasks. We did not reject any

HIT responses and annotators were always paid for their time, opting to instead

ignore low-quality responses without consensus. From manual inspection, we

found that with adequate examples, our annotators generally understood the

task and answered to the best of their abilities.

Iterative learning. Starting from the initial label set, the dataset is enlarged

by an iterative process that alternates between training a classifier on the cur-

rent label set, applying it to unlabeled images, and sending unconfident images

back to the crowd for more labeling. We start the process by constructing a

tentative training set. For media and content attributes, we sample images with

handpicked tags as positives and random images as negatives. For example, the

Dog attribute is seeded by a classifier trained on positive images from Behance

tagged with “Dog”. The first classifier is trained on this tentative training set

with the expectation that this classifier’s guesses will be quickly refined by the

crowd. For emotion images, there are no suitable tags, so we start by collecting

a training set from the crowd, randomly sampled from photography and fine

art fields.

On each iteration, we train a deep learning classifier using 90% of the total

collected crowd labels. The last 9% are always held out for validation. To select

the next round of images to show to the crowd, we define an “interestingness”

score threshold on the validation set such that the precision of relevant valida-

tion images above this threshold is 50%. The crowd labels 5,000 “interesting”

images above this threshold. This way, the crowd always sees an even split of

likely-positive and likely-negative images. The resulting crowd labels are added

to the training set for the next iteration.

58



After four iterations, we arrive at a final classifier that has good discrimina-

tion performance on this attribute. We score the entire dataset with this classifier

and use thresholds to select the final set of positives and negatives. The positive

score threshold is chosen such that the precision of higher-scoring validation

images is 90%, and the negative threshold is chosen such that the recall of vali-

dation images above this threshold is 95%. In this way, we can ensure that our

final labeling meets strict quality guarantees.

It is important to note that the resulting size of the dataset is determined

solely by the number of relevant images in Behance, our desired quality guar-

antees, and the accuracy of the final classifier. A better attribute classifier can

add more images to the positive set while maintaining the precision threshold.

If we need more positive data for an attribute, we can sacrifice precision for a

larger and noisier positive set.

Classifier. For content attributes, our classifier is a fine-tuned 50-layer

ResNet [26] originally trained on ImageNet. For emotion and media attributes,

we found it better to start from StyleNet [17]. This model is a GoogLeNet [62],

fine-tuned on a style prediction task inferred from user behavior. Each network

is modified to use binary class-entropy loss to output a single attribute score.

To avoid overfitting, we only fine-tune for three epochs on each iteration. See

Fig. 4.4 for examples of Behance images.

4.2.2 Resulting dataset statistics

Our final dataset includes positive and negative examples for 20 attributes. The

median number of positive images across each attribute is 54,000, and the me-

59



Content

bicycle

bird

building

cars

cat

dog

flower

people

tree

Emotion

gloomy

happy

peaceful

scary

Media

3d

comic

graphite

oilpaint

pen-ink

vectorart

watercolor

Figure 4.4: Example images from Behance Artistic Media. We encourage the
reader to zoom in for more detail.

dian number of negative images is 8.7 million. The “People” attribute has the

most positive images (1.74 million). Humans are commonly featured as art sub-

60



jects, so this is not surprising. The attribute with the least positives is “Cat”

with 19,244 images. We suspect this is because our labeler cannot easily distin-

guish cats from other cat-like renditions. As shown in supplementary material,

cats on Behance are commonly rendered in many different styles with very high

intra-class variation. Statistics for all attributes are shown in Fig. 4.5.

Deep learning amplifies the effort of our human annotators by a factor of 505

averaged across all attributes. Here, “amplification” is defined as the number

of automatically inferred labels divided by the number of images seen by the

crowd. When labeling a dataset as large and diverse as Behance, automatic sys-

tems can quickly throw away easy negatives, focusing the crowd’s attention on

potentially relevant images. This means most of the amplification effect comes

from negative images. If we alternatively define amplification as the number of

automatically-labeled positive images divided by the number of crowd-labeled

positive images, the average amplification factor is 17.4.

4.2.3 Final quality assurance

As a quality check, we tested whether the final labeling set meets our desired

quality target of 90% precision at 95% recall. For each attribute, we show an-

notators 100 images from the final automatically-labeled positive set and 100

images from the final negative set. Images are presented in random order using

the same interface used to collect the dataset. Fig. 4.6 shows worker agreement

on the positive set as a proxy for precision. The mean precision across all at-

tributes is 90.4%, where precision is the number of positive images where at

least one annotator indicates the image should be positive.

61



co
nte

nt-c
at

m
ed

ia
-o

ilp
ai

nt

em
ot

io
n-h

ap
py

co
nte

nt-d
og

m
ed

ia
-w

at
er

co
lo

r

co
nte

nt-b
icy

cle

em
ot

io
n-sc

ar
y

em
ot

io
n-g

lo
om

y

co
nte

nt-b
ird

co
nte

nt-f
lo

wer

m
ed

ia
-p

en
-in

k

m
ed

ia
-v

ec
to

ra
rt

m
ed

ia
-3

d-g
ra

phics

m
ed

ia
-g

ra
phite

co
nte

nt-b
uild

in
g

co
nte

nt-c
ar

s

m
ed

ia
-c

om
ic

co
nte

nt-t
re

e

em
ot

io
n-p

ea
ce

fu
l

co
nte

nt-p
eo

ple
103

104

105

Number of positive images

em
ot

io
n-p

ea
ce

fu
l

co
nte

nt-p
eo

ple

m
ed

ia
-3

d-g
ra

phics

co
nte

nt-b
uild

in
g

co
nte

nt-b
ird

co
nte

nt-f
lo

wer

m
ed

ia
-p

en
-in

k

co
nte

nt-t
re

e

co
nte

nt-c
ar

s

m
ed

ia
-g

ra
phite

m
ed

ia
-c

om
ic

m
ed

ia
-v

ec
to

ra
rt

em
ot

io
n-g

lo
om

y

co
nte

nt-b
icy

cle

co
nte

nt-d
og

em
ot

io
n-h

ap
py

m
ed

ia
-o

ilp
ai

nt

co
nte

nt-c
at

em
ot

io
n-sc

ar
y

m
ed

ia
-w

at
er

co
lo

r
0

200

400

600

800

1000

1200

Amplification: Ratio of automatic labels
to crowd labels

Figure 4.5: Top: Number of positive images in the final set. Bottom: Amount of
amplification for each attribute (number of automatic labels divided by number
of crowd labels)

To measure recall, we examine how many workers found positive images in

the negative set. Across all attributes, at least one worker indicated the image

was negative for 98.9% images in the negative set, surpassing our original recall

target of 95%.

4.3 Experiments

We can use this dataset to teach machine vision systems about high-level image

categorization. First, we explore the representation gap in pre-trained object

detectors, showing that existing systems cannot detect objects rendered across

many different art styles. Training on artistic imagery improves detection per-

formance. Second, we compare different feature extraction strategies on emo-

62



co
nte

nt-b
uild

in
g

em
ot

io
n-g

lo
om

y

co
nte

nt-f
lo

wer

m
ed

ia
-v

ec
to

ra
rt

co
nte

nt-p
eo

ple

em
ot

io
n-h

ap
py

m
ed

ia
-c

om
ic

m
ed

ia
-o

ilp
ai

nt

m
ed

ia
-p

en
-in

k

m
ed

ia
-g

ra
phite

em
ot

io
n-sc

ar
y

co
nte

nt-t
re

e

em
ot

io
n-p

ea
ce

fu
l

m
ed

ia
-3

d-g
ra

phics

m
ed

ia
-w

at
er

co
lo

r

co
nte

nt-b
icy

cle

co
nte

nt-c
ar

s

co
nte

nt-b
ird

co
nte

nt-d
og

co
nte

nt-c
at

0.0

0.2

0.4

0.6

0.8

1.0
Final labeling precision

2 workers say yes

1 worker says yes

No workers say yes

Figure 4.6: Final quality assurance: Showing worker agreement of
automatically-labeled positive images in the final dataset.

tion and media attributes. Finally, we use Behance-Media to improve the per-

formance of style classification tasks on other datasets.

4.3.1 Detecting objects in artwork

How well do existing object detectors generalize to artistically-rendered objects?

We expect this task to be difficult because existing object detectors trained on

ImageNet or VOC are only exposed to a very narrow breadth of object represen-

tations. Objects in photographs are constrained by their real-world appearance.

We consider 6 content attributes that correspond to Pascal VOC categories:

Bicycle, Bird, Cars, Cat, Dog, People. We then extract scores for these attributes

using two object detectors trained on VOC: YOLO [58] and SSD [45]. For the

sake of comparison, we use these detectors as binary object classifiers by using

the object of interest’s highest-scoring region from the detector output. We also

compare to ResNet-50 classifiers [26] trained on ImageNet, taking the maximum

63



0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

content-bicycle

(Ours)

YOLO

SSD

ResNet-50, ImageNet

(Fusion: ResNet + Ours)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

content-bird

(Ours)

YOLO

SSD

ResNet-50, ImageNet

(Fusion: ResNet + Ours)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

content-cars

(Ours)

YOLO

SSD

ResNet-50, ImageNet

(Fusion: ResNet + Ours)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

content-cat

(Ours)

YOLO

SSD

ResNet-50, ImageNet

(Fusion: ResNet + Ours)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

content-dog

(Ours)

YOLO

SSD

ResNet-50, ImageNet

(Fusion: ResNet + Ours)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

content-people

(Ours)

YOLO

SSD

Figure 4.7: PR curves for different VOC object categories comparing our model,
YOLO, SSD, ResNet-50, and fusion of ours and ResNet-50.

dimension of the ImageNet synsets that correspond with the VOC category of

interest. In this way, we can measure how well existing object detectors and

classifiers already find objects in art without extra training. We also compare to

our final attribute classifier trained in Sec. 4.2.1.

We evaluate these methods on 5,000 positives and 5,000 negatives on each

attribute’s human-labeled validation set to avoid potential bias from the auto-

64



AP Ours Yolo SSD RN50 Fusion
Bicycle 0.9703 0.9008 0.9116 0.8702 0.9704
People 0.9103 0.8863 0.8952 —1 —

Bird 0.9400 0.8516 0.8387 0.8768 0.9453
Cat 0.9660 0.8583 0.8620 0.8026 0.9501

Cars 0.9551 0.9140 0.9194 0.8519 0.9628
Dog 0.9272 0.8510 0.8582 0.8818 0.9293

Table 4.2: Average precision across different VOC categories using our model,
YOLO, SSD, ResNet-50, and fusion of ours and ResNet-50. 1: We do not report
people results because there are relatively few ImageNet people categories.

matic labeler. The results are shown as precision/recall curves in Fig. 4.7 and

AP is shown in Tab. 4.2. Vision systems trained on photography datasets like

VOC (YOLO, SSD) and ImageNet (RN50) perform worse than vision systems

that have seen objects in artwork during training. Indeed, from manual inspec-

tion, most false negatives of these systems involve objects rendered with unique

artistic styles. Specific failure cases are shown in Fig. 4.1. This shows that ex-

isting datasets have a representational gap that can be amended by seeing more

training data.

We can improve performance slightly by fusing ImageNet and Behance

scores together with a simple linear combination. The resulting “Fusion” model

performs slightly better than our own model and ResNet-50 on all but two at-

tributes.

4.3.2 Emotion and media: Which features are best?

Here, we compare the performance of different feature learning strategies on

our dataset’s emotion and style attributes, complementing the content attributes

studied above. Our hypothesis is that features trained on object categories

65



should perform better on object attributes and features trained on style predic-

tion tasks should perform better on style attributes. To test this hypothesis, we

extract features from the final linear layer of a pre-trained ResNet-50 model and

features from StyleNet [17]. We then measure the precision and recall of a linear

SVM on held-out human labels for each attribute.

Performance for six attributes is given in Fig. 4.8. For all four emotion at-

tributes, the AP of linear classifiers on StyleNet features is greater than the AP

of linear classifiers on ImageNet-derived features. StyleNet features also have

higher AP than ImageNet-derived features on four out of six media attributes.

However, ImageNet-derived features have higher AP than StyleNet features on

all nine content attributes.

This supports the view that vision systems trained to distinguish object cate-

gories can more easily transfer domain knowledge to distinguishing artistic ob-

jects as well. One might wonder whether information about artistic style would

be more important for this task, but that is not the case; instead, fine-tuning

a network for style prediction tasks [17] makes it more suitable to distinguish

emotion and media attributes at the cost of reducing its object detection perfor-

mance.

4.3.3 Using Behance-Media to improve the performance of ex-

isting models

In this section, we show that automatic labels from Behance-Media can improve

style classification on existing datasets. We evaluate on the three datasets intro-

66



duced in [34]: 80,000 images in 20 photographic styles on Flickr, 85,000 images

from the top 25 styles on Wikipaintings, and the 14,000 images with 14 photo-

graphic styles from the hand-labeled set of AVA [51]. For comparison to pre-

vious work [17], we report AVA classification accuracy calculated only on the

12,000 images that have a single style label.

Our joint attribute model (JAM) training works as follows. Each training

sample (x, i, `) is a tuple of image x, attribute index i, and label ` ∈ {−1, 1}. It

is not suitable to train this model using ordinary cross entropy because each

attribute is not mutually exclusive. Thus, we must use a loss function with two

properties: each attribute output should be independent of other attributes and

unknown attribute values should not induce any gradient. We lift image x to a

20-dimensional partial attribute vector ŷ ∈ R20, where ŷ j,i = 0 and ŷ j=i = `. This

allows us to train using a soft-margin criterion,

loss(x, y) =
1

20

∑
i

log(1 + exp(−ŷiyi)). (4.1)

Our JAM model is a fine-tuned ResNet-50 model with a linear projection from

1,000 to 20 dimensions. Except for the last layer, they share the same architecture

and are merely trained using different loss functions. We trained our model for

100 epochs, starting with a learning rate of 0.1 and multiplying it by 0.93 every

epoch. The training set includes roughly 2 million images evenly sampled be-

tween attributes and evenly distributed between positive and negative images

drawn from the automatically-labeled images in Behance-Media.

Results are shown on Table 4.3. On all three challenges, our model shows

improved results compared to both the original ResNet-50 and StyleNet. This

shows that Behance imagery is rich and diverse enough to improve style recog-

nition tasks on other datasets. This is particularly interesting because Flickr

67



JAM ResNet-50 StyleNet [17]
(ImageNet)

Flickr 0.389 0.376 0.372
Wikipaintings 0.508 0.505 0.414
AVA 0.615 0.603 0.560

Table 4.3: Performance of our joint model for style detection on other datasets

AVA are both focused on photographic style. Categories in AVA are chosen to

be useful for aesthetic quality prediction tasks. In a sense, we have shown that

a model’s knowledge of emotions and media could potentially transfer to pho-

tographic style and aesthetic prediction.

4.4 Conclusion

Computer vision systems need not be constrained to the domain of photogra-

phy. Here, we show how the rich field of artistic imagery can benefit machine

vision systems. We propose a new dataset, “Behance-Media.” This dataset is de-

rived from Behance, a repository of millions of images posted by professional

and commercial artists, representing a broad snapshot of contemporary art-

work. We collected a rich vocabulary of emotion, media, and content attributes

that are both visually distinctive and representative of the diversity found in Be-

hance. However, though Behance does include tag metadata, we showed that

these tags are too noisy to learn directly. Further, the scale of Behance makes

brute-force crowdsourcing unattractive.

To surmount these issues, we collected labels via a hybrid human-in-the-

loop system that uses deep learning to amplify human annotation effort. This

allows existing machine vision systems to focus crowd attention on the images

68



0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

emotion-happy

Fine-tuned StyleNet

Linear classifier, Stylenet

Linear classifier, Resnet-50

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

emotion-scary

Fine-tuned StyleNet

Linear classifier, Stylenet

Linear classifier, Resnet-50

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

media-comic

Fine-tuned StyleNet

Linear classifier, Stylenet

Linear classifier, Resnet-50

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

media-watercolor

Fine-tuned StyleNet

Linear classifier, Stylenet

Linear classifier, Resnet-50

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

media-vectorart

Fine-tuned StyleNet

Linear classifier, Stylenet

Linear classifier, Resnet-50

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

media-graphite

Fine-tuned StyleNet

Linear classifier, Stylenet

Linear classifier, Resnet-50

Figure 4.8: Performance of different features on six emotion and media at-
tributes.

that need human expertise. Our annotation pipeline collects labels at a fraction

of the cost of brute force labeling while meeting precision/recall guarantees of

our choosing.

The resulting dataset is useful for several computer vision tasks. We use it to

highlight the representation gap of current object detection systems trained on

photography, showing that Behance captures a wider gamut of representation

69



styles than current sets such as VOC and ImageNet. We also use Behance to im-

prove the performance of style classification tasks on other datasets, showing

that researchers can train on our dataset for a marked improvement in perfor-

mance.

We believe our dataset provides a good foundation for further research into

the unexplored realm of large-scale artistic imagery.

70



CHAPTER 5

CONCLUSION

Overall, our focus was on creating models that have strong intuition with-

out having to rely on densely labeled training data carefully curated by human

experts.

We anticipate several real-world applications of the work presented here.

The embedding methods used in Chapter 2 and Chapter 3 are useful when vi-

sualizing large-scale datasets using expert refinement. For example, an expert

journalist could use SNaCK to embed a large corpus of related news articles us-

ing an automatic article similarity kernel. The expert would then be able to use

hand-tuned constraints to refine the embedding to gain a better understanding

of how news spreads through social media. Alternatively, one could build a

“visual similarity field guide” using the data collected in previous work [68].

This field guide could be used by amateur birders to better understand fami-

lies of similar-looking easily-confused birds, similar to Merlin Bird ID1. Finally,

the large-scale crowdsourcing used in Chapter 4 is an effective way to collect

large-scale image datasets to use worker time more efficiently.

First, Chapter 2 first explored the triplet query as the fundamental unit of

perceptual similarity. Triplet queries capture a small piece of information about

the relationships between similar objects. To turn this into useful inferences, we

construct a concept embedding that satisfies as many triplet queries as possible.

That way, distances within this embedding correspond to perceptual similarity.

However, collecting raw triplet queries still requires a great deal of effort from

our human annotators. To address this issue, we show how to use a novel anno-
1See http://merlin.allaboutbirds.org/

71

http://merlin.allaboutbirds.org/


tation UI design to increase the number of constraints by an order of magnitude

without a corresponding increase in annotation effort, leading to higher-quality

concept embeddings at less cost.

From here, we extend this work in Chapter 3 for very large-scale set-

tings. Unfortunately, with very large datasets, sparse human annotation is not

enough, so we combine these expert labels with automatic similarity kernels.

This way, deep-learned models can perform most of the “heavy lifting” by im-

puting the embedding with their visual knowledge while human experts fine-

tune the result with their intuitive knowledge. The resulting embedding cap-

tures visual similarity and expert intuition.

Finally, we build a bridge back from abstract concept embeddings to explicit

ontological semantics in Chapter 4. We study the task of assigning expert-

assigned labels for objects, styles, and emotions featured in a large-scale col-

lection of digital artwork. As before, the idea is to combine computer vision

models with human raters within a “human-in-the-loop” setting. To do this, we

incrementally train a deep-learned model to label the dataset while simultane-

ously guiding crowd annotator attention toward the difficult or unclear exam-

ples, similar to an active learning approach. Taking care of the “easy” examples

automatically makes the best use of the crowd’s effort.

All of the work in this thesis makes extensive use of the Mechanical Turk

crowdsourcing platform. Many workers on Mechanical Turk typically perform

this job professionally, many come from underprivileged backgrounds, and

many rely on full-time Turk tasks as their only form of income. This means

that the requester/worker power dynamic can have considerable impact on

workers’ quality of life. To respect this, we try to follow the “We Are Dynamo”

72



group’s “Guidelines for Academic Requesters” as best we can.2 In particular,

we try to provide realistic time estimates and detailed descriptions, we pay the

median worker a wage of at least $8 per hour (a number generally considered

fair on this platform), and we never outright reject work from workers. Instead,

we use quality control techniques to ignore problematic results, trusting work-

ers to complete these subjective tasks to the best of their abilities. In rare cases

where we need to block a worker, we do so nondestructively without harming

their permanent record.

We leave several potential avenues for future work. For example, it is still

not widely known which attributes could characterize artistic expression. In

Chapter 4, we relied on an expert taxonomy, but it is conceivable that a model

with strong intuition may understand which related concepts are meaningful to

humans and which are not. Additionally, it could be worthwhile to study how

to transfer strong intuition from a pre-trained machine back to a human learner

in a machine-teaching setting.

Finally, it is worthwhile to investigate the many forms of bias in our results,

both in terms of demographic worker selection and domain familiarity. For ex-

ample, workers from different cultures and backgrounds may be familiar with

different kinds of food, so they may be able to offer specialized expertise. A

better system could potentially model and take advantage of workers’ familiar-

ity within the domain of interest for fine-grained refinement of the embedding

results.

Bias creeps into our system in other ways. For example, our work only

uses Mechanical Turk workers from the United States. The Food-100 and
2See the open letter to researchers here: http://wiki.wearedynamo.org/index.php/

Guidelines_for_Academic_Requesters

73

http://wiki.wearedynamo.org/index.php/Guidelines_for_Academic_Requesters
http://wiki.wearedynamo.org/index.php/Guidelines_for_Academic_Requesters


Yummly10k dataset used in Chapter 2 and Chapter 3 are predominately skewed

towards American and European cuisine. No attempt to correct for this bias was

created, so it is unlikely that models learned from this data will be able to gen-

eralize to other kinds of dishes. Correcting bias is a necessary step for future

work.

As one final parting comment, if we truly believe that machines should serve

humans rather than the other way around, we should carefully consider how to

give machines humanistic traits like strong intuition or compassion or kindness.

Focusing on strong intelligence with the goal of merely surpassing humans’ in-

ference or problem-solving ability should not be the only academically interest-

ing path.

74



BIBLIOGRAPHY

[1] Yaser S. Abu-Mostafa. Machines that learn from hints. Scientific American,
272:64–69, 1995. 24

[2] Sameer Agarwal, Josh Wills, Lawrence Cayton, Gert Lanckriet, David J
Kriegman, and Serge Belongie. Generalized non-metric multidimensional
scaling. In International Conference on Artificial Intelligence and Statistics,
2007. 4

[3] Ehsan Amid and Antti Ukkonen. Multiview Triplet Embedding: Learning
Attributes in Multiple Maps. In Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML-15), pages 1472–1480, 2015. 28

[4] Oscar Beijbom, Peter J Edmunds, David I Kline, B Greg Mitchell, and David
Kriegman. Automated annotation of coral reef survey images. In CVPR.
IEEE, 2012. 24

[5] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. Label Propagation
and Quadratic Criterion, pages 193–216. MIT Press, 2006. 35

[6] Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating con-
straints and metric learning in semi-supervised clustering. In ICML. ACM,
2004. 35

[7] A. Biswas and D. Parikh. Simultaneous Active Learning of Classifiers and
Attributes via Relative Feedback. In CVPR, June 2013. 27

[8] Damian Borth, Rongrong Ji, Tao Chen, Thomas Breuel, and Shih-Fu Chang.
Large-scale visual sentiment ontology and detectors using adjective noun
pairs. In Proc. MM, 2013. 50, 51

[9] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–Mining
Discriminative Components with Random Forests. In ECCV. Springer,
2014. 25, 41

[10] Steve Branson, Grant Van Horn, Serge Belongie, and Pietro Perona. Bird
species categorization using pose normalized deep convolutional nets. In
BMVC, Nottingham, 2014. 34

[11] Steve Branson, Grant Van Horn, Catherine Wah, Pietro Perona, and Serge
Belongie. The Ignorant Led by the Blind: A Hybrid Human-Machine Vi-

75



sion System for Fine-Grained Categorization. IJCV, 108(1-2):3–29, February
2014. 22, 27

[12] E. J. Crowley and A. Zisserman. In search of art. In Workshop on Computer
Vision for Art Analysis, ECCV, 2014. 51

[13] Yin Cui, Feng Zhou, Yuanqing Lin, and Serge J. Belongie. Fine-grained
categorization and dataset bootstrapping using deep metric learning with
humans in the loop. In Proc. CVPR, 2016. 52

[14] C. Demiralp, C.E. Scheidegger, G.L. Kindlmann, D.H. Laidlaw, and J. Heer.
Visual Embedding: A Model for Visualization. IEEE Computer Graphics and
Applications, 34(1):10–15, January 2014. 22, 24

[15] C.D. Demiralp, M.S. Bernstein, and J. Heer. Learning Perceptual Kernels
for Visualization Design. IEEE Trans. on Visualization and Computer Graphics,
20(12):1933–1942, December 2014. 22, 27

[16] Sagnik Dhar, Vicente Ordonez, and Tamara L. Berg. High level describable
attributes for predicting aesthetics and interestingness. In CVPR, 2011. 51

[17] Chen Fang, Hailin Jin, Jianchao Yang, and Zhe L. Lin. Collaborative feature
learning from social media. CoRR, abs/1502.01423, 2015. 50, 51, 52, 59, 66,
67, 68

[18] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing ob-
jects by their attributes. In CVPR Workshops 2009, pages 1778–1785, 2009.
50

[19] Ryan Farrell, Om Oza, Ning Zhang, Vlad I. Morariu, Trevor Darrell, and
Larry S. Davis. Birdlets: Subordinate categorization using volumetric
primitives and pose-normalized appearance. In ICCV, 2011. 33

[20] M. Ferecatu and D. Geman. A statistical framework for image category
search from a mental picture. IEEE TPAMI, June 2009. 7

[21] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-consistent local
distance functions for shape-based image retrieval and classification. In
IEEE ICCV, 2007. 7

[22] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image Style
Transfer Using Convolutional Neural Networks. In Proc. CVPR, 2016. 51

76



[23] Shiry Ginosar, Daniel Haas, Timothy Brown, and Jitendra Malik. Detecting
people in cubist art. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol-
ume 8925, pages 101–116, 2015. 51

[24] Ryan Gomes, Peter Welinder, Andreas Krause, and Pietro Perona. Crowd-
clustering. NIPS, 2011. 7, 28

[25] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction
by learning an invariant mapping. In CVPR, 2006. 28

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proc. CVPR, 2016. 59, 63

[27] Hannes Heikinheimo and Antti Ukkonen. The crowd-median algorithm.
In First AAAI Conference on Human Computation and Crowdsourcing, 2013. 7

[28] Eric Heim, Matthew Berger, Lee M. Seversky, and Milos Hauskrecht.
Efficient Online Relative Comparison Kernel Learning. arXiv preprint
arXiv:1501.01242, 2015. 42

[29] Gary B. Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. La-
beled faces in the wild: A database forstudying face recognition in uncon-
strained environments. In Workshop on Faces in’Real-Life’Images: Detection,
Alignment, and Recognition, 2008. 11

[30] Hamid Izadinia, Bryan C. Russell, Ali Farhadi, Matthew D. Hoffman, and
Aaron Hertzmann. Deep Classifiers from Image Tags in the Wild. In
Proc. Multimedia COMMONS, 2015. 54

[31] K.G. Jamieson and R.D. Nowak. Low-dimensional embedding using adap-
tively selected ordinal data. In Allerton Conference on Communication, Con-
trol, and Computing, 2011. 4, 7

[32] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014. 34

[33] Brendan Jou, Tao Chen, Nikolaos Pappas, Miriam Redi, Mercan Topkara,
and Shih-Fu Chang. Visual Affect Around the World: A Large-scale Multi-

77



lingual Visual Sentiment Ontology. In Proc. MM, pages 159–168, 2015. 51,
54

[34] Sergey Karayev, Matthew Trentacoste, Helen Han, Aseem Agarwala,
Trevor Darrell, Aaron Hertzmann, and Holger Winnemöller. Recognizing
image style. In Proc. BMVC, 2014. 50, 51, 52, 67

[35] Maurice George Kendall. Rank correlation methods. Griffin, 1948. 27

[36] Matthus Kleindessner and Ulrike von Luxburg. Uniqueness of Ordinal
Embedding. JMLR, 2014. 27

[37] Ivan Krasin, Tom Duerig, Neil Alldrin, Andreas Veit, Sami Abu-El-
Haija, Serge Belongie, David Cai, Zheyun Feng, Vittorio Ferrari, Victor
Gomes, Abhinav Gupta, Dhyanesh Narayanan, Chen Sun, Gal Chechik,
and Kevin Murphy. Openimages: A public dataset for large-scale
multi-label and multi-class image classification. Dataset available from
https://github.com/openimages, 2016. 50, 51

[38] Jonathan Krause, Benjamin Sapp, Andrew Howard, Howard Zhou,
Alexander Toshev, Tom Duerig, James Philbin, and Li Fei-Fei. The un-
reasonable effectiveness of noisy data for fine-grained recognition. In
Proc. ECCV, 2016. 52

[39] Neeraj Kumar, Alexander C. Berg, Peter N. Belhumeur, and Shree K. Nayar.
Describable visual attributes for face verification and image search. IEEE
Trans. PAMI, 33:1962–1977, 2011. 11, 51

[40] Shrenik Lad and Devi Parikh. Interactively guiding semi-supervised clus-
tering via attribute-based explanations. In ECCV. Springer, 2014. 28

[41] Yong Jae Lee and K. Grauman. Learning the easy things first: Self-paced
visual category discovery. In CVPR, pages 1721–1728, June 2011. 33

[42] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network.
arXiv:1312.4400 [cs], December 2013. arXiv: 1312.4400. 34

[43] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:
Common objects in context. In Proc. ECCV, pages 740–755, 2014. 47

[44] Tsung-Yu Lin and Subhransu Maji. Visualizing and understanding deep

78



texture representations. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2016. 51

[45] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, and Alex C. Berg. SSD: Single Shot MultiBox Detector. In Proc. ECCV,
2016. 63

[46] Zhengdong Lu and M.A. Carreira-Perpinan. Constrained spectral cluster-
ing through affinity propagation. In CVPR, June 2008. 28

[47] Brian McFee. More like this: machine learning approaches to music similarity.
PhD thesis, University of California, San Diego, May 2012. 4, 7, 22

[48] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013. 41

[49] George A Miller. The magical number seven, plus or minus two: some lim-
its on our capacity for processing information. Psychological review, 63(2):81,
1956. 27

[50] Ishan Misra, C. Lawrence Zitnick, Margaret Mitchell, and Ross Girshick.
Seeing through the Human Reporting Bias: Visual Classifiers from Noisy
Human-Centric Labels. In CVPR, 2016. 55

[51] Naila Murray, Luca Marchesotti, and Florent Perronnin. AVA: A large-scale
database for aesthetic visual analysis. In Proc. CVPR, 2012. 50, 51, 67

[52] Pere Obrador, Michele A. Saad, Poonam Suryanarayan, and Nuria Oliver.
Towards category-based aesthetic models of photographs. In Proc. MMM,
2012. 51

[53] Genevieve Patterson and James Hays. Sun attribute database: Discovering,
annotating, and recognizing scene attributes. In Proc. CVPR, 2012. 50, 51

[54] Kuan-Chuan Peng, Amir Sadovnik, Andrew Gallagher, and Tsuhan Chen.
Where do emotions come from? predicting the emotion stimuli map. In
Proc. ICIP, 2016. 51

[55] Robert Plutchik. The nature of emotions: Human emotions have deep evo-
lutionary roots. American Scientist, 89(4):344–350, 2001. 54

79



[56] Nikhil Rasiwasia, Pedro J. Moreno, and Nuno Vasconcelos. Bridging the
gap: Query by semantic example. IEEE Trans. Multimedia, 9:923–938, 2007.
50

[57] Miriam Redi and Bernard Mérialdo. Enhancing semantic features with
compositional analysis for scene recognition. In ECCV Workshops, 2012.
51

[58] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
Only Look Once: Unified, Real-Time Object Detection. In CVPR 2016,
pages 779–788, 2016. 63

[59] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S.
Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual
recognition challenge. CoRR, abs/1409.0575, 2014. 27

[60] Walter J. Scheirer, Neeraj Kumar, Peter N. Belhumeur, and Terrance E.
Boult. Multi-attribute spaces: Calibration for attribute fusion and simi-
larity search. In CVPR, 2012. 51

[61] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A Uni-
fied Embedding for Face Recognition and Clustering. arXiv:1503.03832 [cs],
March 2015. arXiv: 1503.03832. 22, 27, 28

[62] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going Deeper with Convolutions. arXiv:1409.4842 [cs], Septem-
ber 2014. arXiv: 1409.4842. 34, 59

[63] Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and Adam Tauman
Kalai. Adaptively learning the crowd kernel. In ICML, 2011. 4, 5, 7, 9, 18,
26, 30

[64] Wei Tang, Hui Xiong, Shi Zhong, and Jie Wu. Enhancing Semi-supervised
Clustering: A Feature Projection Perspective. In SIGKDD, 2007. 28

[65] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-
SNE. JMLR, 9(2579-2605):85, 2008. 26, 29, 30

[66] Laurens Van der Maaten and K. Weinberger. Stochastic triplet embedding.

80



In IEEE Int. Workshop on Machine Learning for Signal Processing, 2012. 4, 7,
11, 12, 22, 24, 26, 29, 30, 42

[67] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, Califor-
nia Institute of Technology, 2011. 27, 33

[68] Catherine Wah, G. V. Horn, Steve Branson, Subhransu Maji, Pietro Perona,
and Serge Belongie. Similarity Comparisons for Interactive Fine-Grained
Categorization. CVPR, 2014. 5, 9, 22, 27, 71

[69] Jiang Wang, Yang song, Thomas Leung, Chuck Rosenberg, Jinbin Wang,
James Philbin, Bo Chen, and Ying Wu. Learning Fine-grained Image
Similarity with Deep Ranking. arXiv:1404.4661 [cs], April 2014. arXiv:
1404.4661. 28

[70] Xiang Wang, Buyue Qian, and Ian Davidson. On constrained spectral clus-
tering and its applications. Data Mining and Knowledge Discovery, 28(1):1–
30, September 2012. 35

[71] Michael J Wilber, Iljung S Kwak, and Serge J Belongie. Cost-effective hits
for relative similarity comparisons. In AAAI Conference on Human Compu-
tation and Crowdsourcing, 2014. 24, 42

[72] Jeremy M. Wolfe. Guided search 2.0 a revised model of visual search. Psy-
chonomic Bulletin & Review, 1, June 1994. 9

[73] Pengcheng Wu, Steven C.H. Hoi, Hao Xia, Peilin Zhao, Dayong Wang, and
Chunyan Miao. Online Multimodal Deep Similarity Learning with Appli-
cation to Image Retrieval. In ACM International Conference on Multimedia,
2013. 28

[74] Eric P. Xing, Michael I. Jordan, Stuart Russell, and Andrew Ng. Distance
metric learning with application to clustering with side-information. In
NIPS, 2002. 28

[75] Jinfeng Yi, Rong Jin, Shaili Jain, and Anil Jain. Inferring users preferences
from crowdsourced pairwise comparisons: A matrix completion approach.
In HCOMP, 2013. 7

[76] Jinfeng Yi, Rong Jin, Shaili Jain, Tianbao Yang, and Anil K. Jain. Semi-

81



crowdsourced clustering: Generalizing crowd labeling by robust distance
metric learning. In NIPS, 2012. 28

[77] Jinfeng Yi, Lijun Zhang, Rong Jin, Qi Qian, and Anil Jain. Semi-supervised
Clustering by Input Pattern Assisted Pairwise Similarity Matrix Comple-
tion. In ICML, 2013. 28

[78] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with hu-
mans in the loop, 2015. arXiv:1506.03365. 52, 55

[79] Liwen Zhang, Subhransu Maji, and Ryota Tomioka. Jointly Learning Mul-
tiple Perceptual Similarities. arXiv:1503.01521 [cs, stat], March 2015. arXiv:
1503.01521. 28, 42

82


