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Abstract

We propose a novel measure of visual similarity for im-

age retrieval that incorporates both structural and aes-

thetic (style) constraints. Our algorithm accepts a query

as sketched shape, and a set of one or more contextual im-

ages specifying the desired visual aesthetic. A triplet net-

work is used to learn a feature embedding capable of mea-

suring style similarity independent of structure, delivering

significant gains over previous networks for style discrim-

ination. We incorporate this model within a hierarchical

triplet network to unify and learn a joint space from two

discriminatively trained streams for style and structure. We

demonstrate that this space enables, for the first time, style-

constrained sketch search over a diverse domain of digital

artwork comprising graphics, paintings and drawings. We

also briefly explore alternative query modalities.

1. Introduction

Determining user intent from a visual search query re-

mains an open challenge, particularly within Sketch based

Image Retrieval (SBIR) where free-hand sketched queries

often present ambiguous or incomplete descriptions of the

desired visual content [8]. Traditionally, SBIR literature

considers images to be similar if they contain objects of

similar shape (e.g. fine-grained [35, 39, 29]) or semantics

(e.g. category retrieval [9, 13, 25]). However, such defini-

tions do not scale well to larger datasets, where a sketched

shape can closely match a diverse range of content. Ad-

ditional visual modalities have been explored within the

sketch, such as color [31, 3], explicit labeling of sketched

parts [6, 14], and motion (for video) [7, 1, 15] to better con-

strain the query and so improve the relevance of results.

This paper proposes a novel definition of visual similar-

ity for SBIR, in which the sketched query is constrained

using one or more secondary (contextual) images to specify

the desired aesthetic of the results. For example, a sketch

of a dog accompanied by a contextual set of watercolor

paintings, or scary images, would yield watercolor paint-

ings of dogs, or images of scary dogs, respectively. Impor-

tantly, we do not require the contextual images to contain

the desired subject matter (e.g. dogs). Rather, we seek to

disentangle the notions of content (structure) and aesthetics

(style) enabling independent specification of both within the

query. Visual style remains a highly challenging and under-

studied area of Computer Vision. Our exploration of style as

a modality for visual search complements recent advances

e.g. in style transfer [10] enabled by deep learning.

Constraining visual search to match a user’s intended

‘look and feel’ is a promising novel direction for enhanc-

ing search relevance, particularly over aesthetically diverse

imagery. Our work leverages a recent large-scale dataset of

contemporary artwork covering a breadth of styles, media

and emotions (BAM [37]) from which we learn a model of

aesthetic style. Concretely, we propose a hierarchical triplet

convolutional neural network (convnet) architecture to learn

a low-dimensional joint embedding for structure and style.

Each branch of this network unifies complementary infor-

mation on scene structure and aesthetics derived from two

discriminatively trained convnet streams, which are them-

selves of triplet architecture.

Our technical contributions are three-fold. First, we pro-

pose a triplet convnet to learn an embedding for aesthetic

style, showing this novel model to outperform by a large

margin, previous attempts to use deep convnets for mea-

suring visual style similarity. Second, we build upon our

model, incorporating a state of the art convnet for sketch-

photo similarity [4] to develop a hierarchical triplet convnet

for learning a joint space for structural and style similarity

over a diverse domain of digital artwork (comprising not

only photos, but also paintings, 3D renderings, hand-drawn

and vector-art drawings, in a variety of media). Third, we

demonstrate and evaluate the performance of our model
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within a novel SBIR framework that uniquely accepts a set

of contextual images alongside the sketched query shape,

enabling stylistic constraint of the visual search. Although

our study is scoped primarily to leverage sketches as means

for specifying structure in queries, we also experiment with

alternative modalities such as artwork and text.

2. Related Work

Visual style remains a sparsely researched topic that has

received greatest attention from the synthesis perspective

e.g. style transfer through learning visual analogies [12] or

more recently deep representations [10]. The Gram matrix

computed across layers of a pre-trained model (e.g. VGG-

16 on ImageNet) has been shown to abstract content from

style in diverse imagery, and has been exploited for texture

description [20]. Deep convnets have also been shown ef-

fective at classifying artwork style [16]. Although targetting

photographs rather than general artwork, aesthetic classifi-

cation and rating of images has also been explored via at-

tributes such as depth of field and exposure [23, 21]. More

generally, attributes [17, 27] (including relative attributes

[18]) have been used to assist visual search. However at-

tribute models often require explicit definition of a fixed set

of attribute categories, or pre-training for their detection.

This paper explores effective representations for lever-

aging style as a constraint in a visual search. Rather than

attempting to classify aesthetic attributes, we develop a def-

inition of visual similarity that disentangles image structure

and style, enabling independent specification of each in a

visual search query. We leverage SBIR as a platform for

this study. Sketches primarily describe structure, and we

propose such descriptions be augmented with one or more

images exemplifying the desired visual style of results. Ef-

fective methods for augmenting shape description in SBIR

are becoming urgently needed to resolve query ambiguity

as SBIR matures to larger datasets. Our use of convnets

to unify structure and style complements recent deep ap-

proaches for shape matching in SBIR [39, 29, 2, 4, 5] which

have been shown to outperform shallow-learning models

[33, 9, 13, 28]. Contrastive loss networks have been used

to map sketches to photo edge-maps or rendered 2D views

of 3D models [25, 34]. Triplet networks have also been

leveraged for both fine-grained [39, 29] and category-level

SBIR [4]. Convnets were fused with a complex pipeline

incorporating object proposals, query expansion and re-

ranking for retrieval [2]. All these methods address SBIR

via cross-domain learning; the gap between sketch and pho-

tos is bridged via regression explicitly seeking to discard

appearance properties. Our goal is not proposing another

shape matching technique. Rather, we incorporate a lead-

ing model [4] to explore aesthetic constraint of SBIR.

Relevance feedback (RF) is often used disambiguate user

intent particularly when multiple modalities exist in a query

[14]. RF requires user interaction to iteratively refine search

results, learning a per-query re-weighting of the feature

space. Classically this is learned via linear classifier [30],

or recently, online learning of shallow convnets using pos-

itive and negative images [36]. Our work also explores

re-weighting using convnets, but pre-learns a corpus-wide

model for combining structural and style modalities. Unlike

RF, we do not iteratively request feedback from the user.

3. Methodology

We describe the proposed network architecture and train-

ing methodology for learning a feature embedding for vi-

sual search with aesthetic context.

3.1. Behance Artistic Media (BAM) Dataset

Our work leverages BAM; a dataset of ∼65 million con-

temporary artworks from https://behance.net [37]

annotated using a large-scale active learning pipeline [38].

The annotations in BAM include semantic categories (bicy-

cle, bird, cars, cat, dog, flower, people, tree); seven labels

for a wide breadth of different artistic media (3D render-

ings, comics, pencil/graphite sketches, pen ink, oil paint-

ings, vector art, watercolor); four emotion labels of im-

ages likely to induce certain emotions in the viewer (happy,

gloomy, peaceful, scary); and short textual captions for a

small subset of images. The dataset’s semi-automated label

annotations come in the form of likelihood scores which

may be thresholded at desired quality targets to control the

trade-off between dataset size and label precision. In our

work, we use images labeled at a precision of 90%. We

adopt BAM due to the high diversity of artistic content span-

ning drawings, paintings, graphics and vector art in con-

temporary and classic styles. In contrast, AVA [23] com-

prises largely photographic content proposed for aesthetic

attribute mining.

3.2. Hierarchical Network Architecture

Triplet networks are commonly applied to learn low-

dimensional feature embeddings from data distributions,

and have recently been applied to photo-based object in-

stance retrieval [11, 26]. Our proposed architecture is also

of triplet design, each branch unifying two discriminatively

trained network streams that independently learn a fea-

ture embedding for image structure and style respectively

(Fig. 2). Furthermore, the network stream for each modal-

ity has, itself, a triplet sub-structure. The architecture and

training of the style stream is given in Fig. 1 and described

in detail within Sec. 3.2.1. The structure branch is not a

contribution of this paper, and reproduces a state of the art

model [4] for shape retrieval 3.2.2. We describe how the

overall triplet model integrates these streams in Sec. 3.2.3,

to learn a joint feature embedding within which we measure

visual similarity for search (Sec. 3.3).
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Figure 1. The triplet convnet for learning the style model

comprises three fully shared (siamese) branches formed from

GoogleNet with a bottleneck layer appended to pool5. Training

proceeds via classification loss, followed by triplet loss guided by

hard negatives exhibiting shared semantics and differing style.

3.2.1 Style Network

We first describe the model forming the style stream

within each branch of our hierarchical triplet architecture.

The network comprises three branches, each augmenting

GoogLeNet [32] through addition of a 128-D inner-product

layer to serve as a bottleneck after pool5 layer and prior

to drop-out. The bottleneck is later shown to be perfor-

mance critical both for style classification and for search

(c.f. Sec. 4) due to the increased sparsity of pool5 fea-

tures when training on diverse artwork rather than photos.

Fig. 1 illustrates the fully-shared (siamese) configuration of

the branches.

The model is trained from scratch, independent of the

wider network, using an 88k artwork training set (Behance-

Net-TT, Sec. 4.1) evenly partitioned into 11 style categories

(S), each balanced across the 8 semantic categories (Z).

Training proceeded initially via classification loss (soft-max

loss, 30 epochs) and then by refinement under triplet loss

(50 epochs). Triplets were formed using a randomly se-

lected anchor image a = (s ∈ S, z ∈ Z), a randomly se-

lected hard positive image p = (s, z′ ∈ Z \ z) and a hard

negative image n = (s′ ∈ S \ s, z). The network describes

a function f(.) minimising:

L(a, p, n) =
[

m+ |f(a)− f(p)|2 − |f(a)− f(n)|2
]

+

(1)

where m = 0.2 is a margin promoting convergence, and

[x]+ indicates the non-negative part of x. Triplet refine-

ment improves decorrelation between semantics and style

(Fig. 3), discouraging learned correlations with objects (e.g.

trees → peaceful, skulls → scary scenes). This refinement is

later shown to yield significant performance gain (Sec. 4.2).

3.2.2 Structure Network

The triplet model of Bui et al. [4], fine-tuned over BAM,

comprises the structure stream. The network incorpo-

Figure 2. Hierarchical triplet convnet combining vectors from the

style (Fig. 1) and structure [4] streams. Joint embedding of the two

modalities is learned (Sec. 3.2.3) from the concatenated features

initially via classification loss, followed by hard negative mining

resulting in a 64-D descriptor for indexing.

rates an anchor branch accepting a sketch query and pos-

itive/negative branches that accept a photographic image as

input. The image branch closely resembles AlexNet [19],

and the sketch branch Sketch-A-Net (a short-form AlexNet

optimal for sketch recognition [40]). The network learns a

joint embedding from exemplar triplets comprising query

sketches, positive photos that match those sketches, and

negative photos that do not. We fix the output layer of the

network to 128-D and inhibit sharing of network weights

across branches i.e. training yields separate functions for

embedding the sketch gs(.) and for the image gi(.) content.

These functions are embedded within our larger network

(Fig. 2).

Training follows the four-stage training process outlined

in [4]. The process utilises the TU-Berlin sketch dataset

(for the anchor) augmented with social media sourced pho-

tographs (for the positive/negative pair). The final step rec-

ommends fine-tuning the network using triplets sampled

from representative imagery; we use random artwork im-

ages sampled from BAM with 480 TU-Berlin sketches hav-

ing category overlap.

3.2.3 Hierarchical (Multi-modal) network

The outputs of the structure and style models are normalised

and concatenated to form a 256-D input vector, forming

the structure of each branch of the larger triplet network

(Fig. 2). Note that the anchor branch integrates gs(.) and

the positive/negative branches gi(.). The branches feed for-

ward to two final inner product layers of 256-D and 64-D

separated by ReLU activation, which learn projection h(.)
over the two 128-D subspaces for visual search.

A careful training protocol is required to ensure conver-
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Figure 3. PCA visualizations showing discrimination and decor-

relation in the style (a) and semantic (b) spaces, before (left) and

after (right) triplet refinement. (c) Activation maximization for

’Scary’ category using method of [24] yields interesting qualita-

tive insight into learned visual attributes for style; objects (teeth

and skull) disappear in the decorrelated space but strong color cues

remain.

gence in these final layers. Since triplet loss is a loose reg-

ularization (loss is computed on the relative distance be-

tween the anchor-positive and anchor-negative pairs) we

have found it more effective to initialise training with a

stricter regularization (soft-max loss). We initially train the

network with an additional classification layer that recog-

nises each of the 8× 11 semantic-style combinations in the

dataset. Training proceeds minimising the hybrid loss:

L′(a, p, n) =
∑

i∈{a,p,n}

φsS(i) + φtL(a, p, n), (2)

where weight type (φs, φt) is set (1.0, 0.0) initially, re-

laxed to (0.2, 0.8) after the initial 2000 epochs.

Training proceeds by passing a sketched query and a ho-

mogeneous style set of artwork (randomly varying between

1-10 images) to the structure gs(.) and style f(.) arms of

the anchor branch, yielding a 256-D query vector. The out-

put of the style stream is averaged over all images in the

style set. The positive and negative vectors are formed via

gi(.) and f(.) each using a single artwork image selected

at random. During initial training, triplets are first formed

randomly: the positive exemplar an artwork image selected

at random from those images sharing the same semantics

and style as the anchor, while the negative exemplar dif-

fers in either semantic or style or both. In the later training

phase (from epoch 1000) , we narrow down the negative

list further by choosing the negative sample from top k re-

turned images using the current network weights as a visual

search system (Sec. 3.3). Query sketches are subject to ran-

dom affine perturbation (rotation, scale, translation) during

training. Although our network takes raster data as input

the TU-Berlin dataset is provided in vector form, enabling

the random omission of sketched strokes for further data

augmentation. Note that all training is carried out on the

Behance-Net-TT and sketch datasets described in Sec. 4.1.

Figure 4. Examples sampled from image sets used to specify style

within the SBIR queries evaluated in Sec. 4.3.

3.3. Visual Search with Aesthetic Context

We index a 879k dataset (Behance-VS, Sec. 4.1) of art-

works D = {d1, ..., dn} forward-passing each image di via

through the hierarchical network to form a 64-D image de-

scriptor d′i.

d′i = h(
[

gi(di) f(di)
]

). (3)

Descriptors are stored within a distributed (map-reduce)

index hosting multiple kd-trees across several machines.

Given query sketch q and set of contextual (style) images

C = {c1, ..., cm} the search descriptor q′ is:

q′ = h(
[

gs(q)
∑m

l=1
ωmf(cl)

]

). (4)

We perform a k nearest-neighbor look-up ranking results

by |q′ − d′i| distance for relevance. Typically the context set

describes a common style and so ci has weight ωi = 1

m
,

however it is possible to blend styles (Sec. 4.4).

4. Experiments and Discussion

We evaluate the retrieval performance of our style model

(Sec. 4.2), and the SBIR+style search that incorporates

it (Sec. 4.3). We experiment with style interpolation

(Sec. 4.3.2) and alternative modalities for queries (Sec. 4.4).

4.1. Dataset Descriptions

Our experiments make use of BAM [37], and the TU-

Berlin [9] dataset of free-hand sketches:

Network Training and Test (Behance-Net-TT, 110k)

Taking the outer product of style and a subset of 8 semantic

attributes in BAM we form 11 × 8 sets of artwork images.

Attribute scores are thresholded using per-attribute thresh-

olds distributed with the dataset for p = 0.9 positive con-

fidence. Images showing positive for both attribute pairs

only, are sorted by the sum of their scores. The top 1.25k

images are taken in each case yielding a balanced dataset of
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Figure 5. Style retrieval performance over 1000 random queries

(Precision @ K=15). Top: best performing style network (style-

triplet loss, mAP 61.0%). Bottom: performance comparison for

all baselines.

110k images. The dataset is partitioned 80:5:15 into train-

ing, validation and test sets, ensuring balanced semantics.

Visual Search Evaluation (Behance-VS, 879k) Subsets

of BAM are created for each of the 11 style categories, by

thresholding attribute scores at p = 0.9. Within each set, a

random sample of 90k images is selected ensuring balanced

semantics i.e. ensuring the same count of positive flags are

present for each semantic category. Images are excluded if

they appear in Behance-Net-TT. Images collated in multiple

sets are discarded. This yields a 879k test corpus for visual

search. A small subset (10 images ×11 styles) is held out

to serve as style sets for the test queries (Fig. 4).

Sketch set (TU-Berlin, 0.5k) 480 sketches from the TU-

Berlin dataset [9] (60×8 object categories overlapping with

BAM) are used to fine-tune the structural branches of the

network (Sec. 3.2.2), and to train the hierarchical network.

A queryset of 24 sketches are used to drive the visual search

evaluation (Sec. 4.3).

4.2. Evaluating Visual Search: Style only

We first evaluate the accuracy of the style model

(Sec. 3.2.1) at retrieving artworks of similar style from the

test partition of Behance-Net-TT. A query set of 1000 im-

ages are selected at random, with even semantic coverage,

from the test partition. Mean Average Precision (mAP) is

computed for the test set (Table 1).

Comparing the models at the initial classification (style-

softmax) and triplet refinement (style-triplet) training

Method mAP (%)

style-triplet* 61.0

style-triplet-unbal* 55.0

style-softmax* 53.6

GoogLeNet* [32] 46.8

Gram / Gatys et al. [10] 38.4

Karayev et al. [16] 34.1
Table 1. Style-only retrieval performance (mAP, 1000 queries; *

indicates Behance-Net-TT trained methods.

stages, the latter shows a performance gain of 7.31% mAP.

A qualitative improvement in style discrimination and se-

mantics decorrelation is also observable when visualizing

the spaces before and after triplet refinement (Fig. 3).

We include an early experiment performed using a se-

mantically unbalanced version of Behance-Net-TT (style-

triplet-unbal) which yielded poorer results suggesting over-

fitting to semantic bias (certain objects became expected for

certain styles) and further motivating decorrelation of style

and semantics. Precision @ K curves are presented for each

style for the leading (triplet) model, and for all models in

Fig. 5. Emotion retrieval is evidently more challenging than

media type, and strong performance is shown in visually

distinctive media e.g. vector art.

Performance is base-lined against three techniques:

Karayev et al. [16] who use pre-trained CaffeNet features

(DECAF6) with no fine-tuning; GoogLeNet [32] features

trained from scratch over the 11 style categories (pool5);

Gatys et al. [10] where Gram matrices computed across

multiple convolutional layers (conv1 1−conv5 1) of a pre-

trained VGG-19 network model, shown in [10] to decorre-

late style from content for image stylization. The retrieval

mAP (Table 1) and precision @ K=15 curves (Fig. 5) in-

dicate significant performance gains in the learned models,

even versus contemporary texture descriptors (Gram [10]).

A surprising result was the degree to which addition of the

bottleneck in GoogLeNet enhanced retrieval performance

(6.8% mAP). The analysis supports incorporation of the

triplet refined model within the wider network.

4.3. Evaluating Visual Search: Sketch+Style

Mechanical Turk (MTurk) was used to evaluate retrieval

accuracy over the top 15 ranked results returned from 264

search queries (24 sketches ×11 style sets), since no anno-

tation for structure and style relevance was available. Each

query required ∼ 4k annotations over the top 15 results with

three repetitions ensuring that no participant re-annotated

the same result. Retrieval was performed using six experi-

mental configurations to search the Behance-VS dataset of

879k artwork images. The configurations explored were:

ss-triplet-64 the proposed combination of sketch+style fea-

tures re-weighted and projected to 64-D by the learned lay-

ers of the multimodal network; ss-triplet-128 similar net-

work but with 128-D output layer; ss-concat a degenerate

case in which the 256-D concatenated sketch+style vector
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Figure 6. Representative structure+style visual search results. Query comprising sketch and a sample of the 10 image style set (inset left).

Method Wcol. Pen Graphite Comic Vector Oil 3D Happy Scary Gloomy Peace mAP

ss-triplet-64 51.2 48.1 53.4 48.1 60.1 55.2 63.0 38.9 42.8 49.7 68.6 52.7

ss-triplet-128 57.7 46.5 56.1 38.6 47.3 60.5 56.2 40.7 38.7 39.8 52.8 48.6

ss-concat 55.2 40.7 37.6 37.3 57.0 50.6 49.9 39.0 43.3 46.5 62.8 47.2

GoogLeNet et al. [32] 43.2 31.2 38.2 20.2 36.9 39.1 46.3 32.6 37.2 38.2 64.0 38.8

Gatys et al. [10] 24.9 32.3 39.8 29.1 40.7 36.5 8.40 29.9 27.9 39.8 43.7 32.1

Karayev et al. [16] 32.3 23.6 34.6 30.6 46.1 23.3 10.3 37.7 27.3 37.4 41.8 31.4

Table 2. Retrieval performance (mAP %)over 24 sketches × 11 styles; mAP computed to rank 15 using MTurk annotation of search results.

is used directly for search i.e. no joint learning; three base-

line style models of Sec. 4.2 substituted for our proposed

model in the full network. Participants were provided with

a tutorial containing examples of each style, and for each

query/result asked to indicate both whether the visual style

matched and if any of the main objects in the image matched

the sketched shape.

4.3.1 Retrieval performance

We compute mAP (Table 2) and precision @ K=15 (Fig.8)

of the proposed method to each of the five baselines, break-

ing down performance per style category. A result is con-

sidered relevant if both structure and style match.

The best performing output layer configuration for the

hierarchical network is 64-D, showing a performance lead

of 4.1% over use of a 128-D layer (offering also a compact-

ness advantage for indexing). Fig. 7 summarises the relative

performance of the techniques, and a t-test was run for all

configuration pairs. When considering performance across

all styles, all proposed methods (ss-*) outperform existing

baselines by a very significant margin (p<0.01) and the use

of 64-D triplet learning in the hierarchical network outper-

forms direct concatenation of the structure and style vectors

(256-D) by significant margin (p<0.15).

All techniques that were explicitly trained on artwork

(BAM) outperformed those that were not, and the trend of

Table 1 is mirrored in the structure+style retrieval results

(Table 2). It is an interesting result that forcing learning to

explicitly de-correlate semantics and style during training of

the style stream of the network (triplet refinement, Sec 3.2),

following by explicit learning of the projection of structure

and style together in the hierarchical network, yields a per-

formance boost, so justifying our network design. Assess-

ing structure relevance only (i.e. considering only shape re-

sponses from MTurk) confirmed little variation (62.5±2.3)

across methods for the 24 × 11 query set. Since this is

simply evaluating prior work [4] on Behance-VS we do not
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Figure 7. Relative performance of proposed method (ss-triplet-64)

versus baselines; (*) indicates learned over BAM.

consider this further, beyond controlling for style. Consid-

ering style relevance only reveals performances of 64.5%,

63.3% and 58.9% for ss-triplet-64, ss-triplet-128, and ss-

concat respectively against 49.0%, 47.8% and 46.5% for

baselines [32], [10], [16] reflecting Table 2. To benchmark

average query time over 897k images we use a single ma-

chine (Xeon E5-2637 3.5Ghz) and achieve ∼ 700ms using

(ss-triplet-64) features.

Figs. 6,11 contain representative results from queries run

under the ss-triplet-64 model. Fig. 12 highlights some in-

correct top-15 results. A vector-artwork and a photo are

returned for a 3D Graphics query, likely due to their flat

backgrounds typical in 3D renderings (in the latter example,

content matches shape but not semantics). The action sports

shot of the cyclist is arguably not ‘peaceful’ but the country-

side setting is a strong prior. Two photos are misidentified

as oil paintings due to flaking paint visible on the wall, and

an incomplete oil painting is returned as the final example.

4.3.2 Blending visual styles

We qualitatively explore interpolation of style in the query

set (Fig. 9). Three pairs of styles (watercolor-graphite,

oilpaint-penink, happy-scary) were combined by varying

the weights ωi (eq.4) on the averaging function using to

combine style vectors from images in the context set. For

example, a cat was queried using 25% watercolor and 75%

graphite as the style context. The results in that case showed

a sketched cat with grey watercolor wash in the background,

whilst a 50:50 blend showed a half-finished watercolor

(many artists upload in-progress work to Behance). We also

explore interpolation within a style, here two watercolor

context images are used for style: one coarse washes, the

other using harsh black outlines depicting fine detail with

a background wash. We observe a trend toward the more

heavily weighted style (media or emotion) suggesting lin-

ear interpolation in this space exert useful control.

4.4. Alternative query modalities

Significant advantages of visual search over text are that

no annotation of the search corpus is required, nor any ad-

Figure 8. Relative performance of proposed method (ss-triplet-64)

versus baselines (precision @ K=15).

herence to a tag ontology. Here we contrast visual search

against the use of free-text keywords for specifying aes-

thetic context or structure. A small portion (∼ 2%) of the

BAM data is accompanied by free-text crowd annotation,

describing content and style in ∼ 3 − 10 words. Approx-

imately 4.2k images within Behance-VS are accompanied

by this annotation, enabling text-based experiments.

We substituted the style stream of our network for a pop-

ular skip-gram network (Word2Vec [22]) with 128-D output

trained over the text corpus in BAM (holding out Behance-

VS). The resulting features were directly input to our frame-

work in ss-concat configuration. Instead of querying with a

sketch + set of style images, we queried the network using

a sketch + free-text phrase: watercolor painting, oil paint-

ing, pen and ink, graphite, 3d graphics, vector art, comic,

scary, gloomy, happy, peaceful. In all, 88 queries (a ran-

dom subset of 8 sketched queries across 11 styles) were run

on this reduced dataset. The results were evaluated through

MTurk under identical protocol to Sec. 4.3. Interestingly,

the results of visually specifying the aesthetic context were

significantly higher (p<0.05) than use of text (40.1% ver-

sus 18.6% mAP). We similarly explored substitution of key-

words for sketches as the structural component of the query,

which indicated more strongly (but without significance) in

favour of the visual query (40.1% versus 36.4% mAP). We

did not pursue this further, as evaluation of [4] versus text

Figure 9. Qualitative results combining pairs of style sets A and B

using different weights for a given sketched query (inset). Exam-

ples of inter- and intra- style blending (view at 400% zoom).
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Figure 10. Alternative query modalities. Top-1 result using (top) Behance artwork as structure; (bottom) text instead of image set as style.

Figure 11. Matrix visualising top result returned for outer-product of all style visual contexts over seven representative query sketches.

search is outside the scope of our contribution. Rather, we

explored substitution of the sketch for an artwork image.

We swap the structure stream gs(.) for gi(.) in the anchor

branch of the hierarchical network. As with sketch, we ob-

served results to correctly disentangle content and style. For

example, a comic of a cat accompanied by watercolor im-

agery returned watercolor cats (Fig. 10).

5. Conclusion

We demonstrated a novel visual search framework using

a structural query (sketch) augmented with a set of contex-

tual images that specify the desired visual style of results.

The framework is underpinned by a learned representation

for measuring visual similarity for SBIR that disentangles

content and aesthetics. We first proposed a triplet convnet

comprising siamese branches adapted from GoogLeNet,

showing significant performance increase over the state of

art for style retrieval alone. We then combined this network

with a shape-matching network [4] to create a multi-modal

network of triplet design. We demonstrated that learning a

projection of structure and style features through this net-

work further enhances retrieval accuracy, evaluating perfor-

mance against baselines in a large-scale MTurk experiment.

Interesting directions for search could further explore

Figure 12. Failure cases from top-15, discussed in Sec. 4.3.1.

blending multiple styles in queries or even style extrap-

olation. Content recommendation systems, or relevance

feedback interfaces, could harness style-space to enhance

browsing and discovery. Exploring alternative modalties for

structure or for style specification (Sec. 4.4) also appears an

interesting avenue, although we do not believe such exten-

sions necessary to demonstrate the novelty and promise of

visual search constrained by aesthetic context.
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