
Bridging the Gap Between Object Detection and User Intent via
Query-Modulation

Marco Fornoni1, Chaochao Yan2,1, Liangchen Luo1, Kimberly Wilber1, Alex Stark1, Yin Cui1, Boqing
Gong1, and Andrew Howard1

1Google Research, 2University of Texas at Arlington

Abstract

When interacting with objects through cameras, or pic-
tures, users often have a specific intent. For example, they
may want to perform a visual search. With most object de-
tection models relying on image pixels as their sole input,
undesired results are not uncommon. Most typically: lack
of a high-confidence detection on the object of interest, or
detection with a wrong class label. The issue is especially
severe when operating capacity-constrained mobile object
detectors on-device. In this paper we investigate techniques
to modulate mobile detectors to explicitly account for the
user intent, expressed as an embedding of a simple query.
Compared to standard detectors, query-modulated detec-
tors show superior performance at detecting objects for a
given user query. Thanks to large-scale training data syn-
thesized from standard object detection annotations, query-
modulated detectors also outperform a specialized referring
expression recognition system. Query-modulated detectors
can also be trained to simultaneously solve for both localiz-
ing a user query and standard detection, even outperform-
ing standard mobile detectors at the canonical COCO task.

1. Introduction

Convolutional neural networks (CNNs) have trans-
formed computer vision, enabling new use cases, as re-
search pushes the limits of accuracy and efficiency. Still,
on capacity-constrained mobile devices even the best per-
forming models can produce results mismatched to the user
intent. An example scenario is illustrated in Fig. 1.

The goal of this paper is to present a formulation for
building mobile object detectors that can leverage user
queries to significantly improve detection accuracy. This
new flavor of models and training procedures, named
Query-Modulated object Detectors (QMD), can even out-
perform traditional detectors when no query is available,
thanks to multitask learning. Computationally, Query-
Modulated Detectors are thus more efficient than traditional
detection models.

What is
that bottle?

😦

The bottle!

😊

Edam cheese
Cheese

Wood

Vinegar bottle

Bottle
🤔 😮

Glass

Figure 1. Example use case for query-modulated detection: a user
points their phone at a group of objects, seeking information about
one of them. The model may not detect the object of interest, or
it may detect it with the wrong label. By explicitly taking into
account the user input, and actively searching for the requested
object, the model can correct the results, and detect the intended
object. Further along the pipeline, the phone might follow up with
nutrition information, or product reviews.

The main contributions of the paper are:
1) We introduce the notion of query-modulated detection,
the task of adapting an object detector computation to take
into account a user query.
2) We propose a way to train query-modulated detectors
directly using synthetic queries generated from large-scale
object detection datasets.
3) We present a multi-task training strategy to simultane-
ously solve for both the query-modulated detection task,
and the traditional object detection task.
4) We show that for query-modulated detection, query em-
beddings can be learned end-to-end, in a lightweight man-
ner, significantly reducing computational and memory costs
with respect to traditional visual grounding approaches, de-
pending on large language models such as BERT [5].
We validate our approach by comparing to standard object
detection and referring expression recognition models.

ar
X

iv
:2

10
6.

10
25

8v
2

 [
cs

.C
V

]
 3

 A
ug

 2
02

2

2. Related Works

In this section we review prior works that most closely
relate to our approach, arranging them into two classes: ob-
ject detection, and referring expression recognition.

Object detection. Object detection is one of the funda-
mental tasks in computer vision, solving for both localiz-
ing the objects, and classifying them using a closed set of
object labels. Modern object detection models are built as
convolutional neural networks and can be broadly divided
into two classes—one-stage and two-stage—according to
the model architecture. Two-stage detection methods [1, 4,
6,7,14,25,26] decompose object detection into object local-
ization and classification by first generating object region
proposals, and then refining and classifying those propos-
als. One-stage methods [13,15,17,22–24,30,38,40] accom-
plish localization and classification simultaneously, achiev-
ing much lower inference times with some accuracy degra-
dation. While some of the errors produced by capacity-
constrained mobile detectors could be addressed by explic-
itly taking into account the user intent, architectures capable
of doing so [33] have only been explored in the referring ex-
pression recognition and visual grounding literature.

Referring expression recognition. The goal of refer-
ring expression recognition is to unambiguously localize
an object, or a region in an image referred to by a natu-
ral language expression, which can be a word, a phrase,
a sentence or even a dialogue [3, 11, 18, 20, 21, 33, 36].
Similarly to object detection, existing referring-expression
recognition systems employ either two-stage, or one-stage
architectures. These are inspired by, or directly derived
from, the object detection literature. Two-stage frame-
works [18, 20, 31, 35–37] operate by first generating a set
of region candidates, and subsequently ranking these re-
gions according to the provided expression. The perfor-
mance of two-stage frameworks is largely capped by the
region proposal generation [29, 33], which is not trained
simultaneously with the candidates ranking module in an
end-to-end manner. One-stage methods [2, 27, 32–34, 39]
recently emerged as the preferred approach. These methods
directly regress a bounding box in accordance with the user
query. Such solutions typically rely on one-stage detection
architectures, such as YOLO [22–24] or SSD [17].

Referring Expression recognition is currently consid-
ered expensive. First, data acquisition is costly: for each
given object of interest, multiple referring expressions need
to be collected and validated by different annotators [11].
Second, computationally expensive NLP models such as
BERT [5] need to be used to process the verbal expres-
sions. On the other hand, [11] reports that 50% of the re-
ferring expressions in their study is composed only of a

noun, while 82% of the remaining ones uses only one ad-
ditional attribute, most typically the object coarse location
(e.g. left, right, bottom). In other words, 91% of the ob-
jects can be correctly localized with referring expressions
as simple as an object label, plus an optional coarse loca-
tion. A basic referring expression recognition system could
thus be directly trained on existing large-scale object detec-
tion datasets, by synthesizing the referring expressions from
the groundtruth bounding-box annotations, and stripping all
NLP processing. Such an approach could be built on top of
high-performance object-detection training pipelines, and
scaled through inexpensive data annotation pipelines. In
other words, it’d come almost for free.

3. Approach
In this paper we formulate the problem of referring-

expression recognition in the context of object detection,
and refer to it as Query-Modulated Detection. We focus
on simple yet effective queries, consisting of an object
label, plus an optional coarse location (e.g. “top-right”).
Similarly to referring expression recognition, we assume
that when a user provides a given query, the target object
must be present in the image. In contrast to referring ex-
pression recognition models: 1) We directly train on syn-
thetic queries from common object detection datasets. 2)
We employ a multi-task training strategy to optimize si-
multaneously for both standard object detection and query-
modulated detection. 3) Since we focus on a closed vocab-
ulary with a limited set of words (the set of labels supported
by the detector), we optionally replace BERT embeddings
with inexpensive K-Hot binary encodings, and learn the
query embedding end-to-end. Furthermore, while visual
referring expression recognition is traditionally a single-
object localization problem (there exists one and only one
image region corresponding to the expression), our setting
is slightly more challenging, as we ask the model to detect
all the objects corresponding to the given query

The architecture for our model is shown in Fig. 2. It
features two inputs: the image (in blue), and the query en-
coding (in red). Similarly to [33], an embedding for the
query is computed by two fully-connected layers (w1 and
w2), followed by a `2-normalization. The query embedding
is then tiled and concatenated to the last convolutional fea-
ture maps (also `2-normalized), before the box predictor. A
1×1 convolution is then employed to fuse the query with the
image features. Finally, the fused feature maps are passed
to a canonical SSD box predictor [17].

3.1. Query Synthesis

As discussed in Sec. 2, 91% of the objects in the ReferIt
dataset [11] can be correctly localized with referring ex-
pressions as simple as the object label, plus an optional
coarse location. We thus propose to generate simple syn-

{Top-Left }

w3Feature
ExtractorIm

ag
e

FPN1 FPNk

Fusion Module Box
Predictor

M
ulti-class D

etection

Shoe
{ Pants }

Top

Q
ue

ry
-M

od
ul

at
ed

 D
et

ec
tio

n

(x, y, w, h, s1, s2, …, sC)

Groundtruth

Detection Loss

sample keep all

Task
Switch1

1
0

0
0

0
1
0

0
0

1
1

1

1
1
1

1

1

1
1

Task-specific groundtruth

F
us

ed
fe

at
ur

es

Tile
&

concat

0
1
0
1

1
1
1
1

w2

w1

Figure 2. The Query-Modulated Detector (QMD) architecture, and its multi-task training pipeline. The reserved [1, 1, . . . , 1] query triggers
standard object detection. All other values are treated as detection queries. A query is represented by a k-hot encoding, and is divided in
two parts: the label encoding, and the location encoding. During training the model alternates between detecting the objects referred by
randomly synthesized queries, and standard object detection.

thetic referring expressions from standard object detection
groundtruth annotations, provided by large-scale datasets
such as Open Images [12] and COCO [16]. Specifically,
we focus on referring expressions containing the categorical
label of the object, plus an optional coarse spatial location
(e.g. “on the right”). Differently from the referring expres-
sion recognition literature, we ask our models to detect all
objects matching a given expression, as in our case more
than one object may be associated to the expression. We
also allow for queries containing multiple object labels at
the same time, e.g. all clothing labels, or all vehicles labels.
For brevity, we use the term query to indicate such loose
referring expressions, and use the term “query-modulated
detection” to indicate the task. We focus on the following
three types of queries, which can be directly synthesized
and evaluated on object-detection datasets:

• Single-Label Detection (SLD). Detect all objects for a
single label, sampled from the image groundtruth.

• K-Label Detection (KLD). Detect all objects for K ran-
dom labels, obtained by independently sampling (with
probability 0.5) each label from the image groundtruth.

• Localized-Label Detection (LLD). Detect all objects
for a single random label, and a coarse spatial loca-

tion. Both the label and the coarse location are sam-
pled from the image groundtruth.

3.1.1 Localized-Label Detection Query Synthesis

In this section we provide the details of the approach used
to synthesize LLD queries. Based on the spatial distribution
in [11] (Fig. 3), and to reflect the way users typically refer
to spatial locations, we employ a few predefined slices for
each axis of a standard 4 × 4 grid. As shown in Fig. 3,
we use 3 reference overlapping slices for the y-axis: {top,
center, bottom}, and 5 partially overlapping slices for the
x-axis: far-left, left, center, right, far-right}. For brevity,
we refer to those as y-slices and x-slices. Furthermore, for
each axis we also employ an additional all slice, to indicate
a lack of constraint on that axis. A location constraint is
finally defined as the product of a y-slice constraint, and a
x-slice constraint. E.g. (top, right), (bottom, left), (all, left).

As in [11], we assume the user would provide a location
constraint only if it is necessary to correctly identify the tar-
get object. For example, if the user wants to indicate the car
in the image, and the image contains only one car instance,
location constraints are not necessary to correctly detect the
desired object. Furthermore, we assume that the user will

select the spatial constraint that most clearly identify the ob-
ject of interest. For example, if both far-right, right, and all
are valid x-slices, we assume the user would pick the most
informative one, namely: far-right.

More formally, we adopt the following approach to syn-
thesize LLD queries from the image groundtruth:

1. Randomly select a target label, among the labels in the
image groundtruth, and prune out all boxes not from
this label.

2. If the target label contains more than one object in-
stance in the image:

(a) Randomly select one of the instances as the final
target.

(b) Select the tightest (y-slice, x-slice) constraint
containing the target instance. In case of mul-
tiple possible solutions, select the one containing
the least number of groundtruth boxes. E.g. if the
target object lies in the overlap between the cen-
ter, and right x-slices, select the one containing
the least number of groundtruth boxes.

3. Finally, prune all remaining boxes not contained in the
selected (y-slice, x-slice) constraint .

C
en
te
r

Top

Far-Left

Left

B
ottom

Right

Far-RightCenter

ALL

A
LL

Figure 3. Grid and reference x-slices (horizontal axis), and y-
slices (vertical axis). A 4 × 4 grid is divided into 3 overlapping
slices on the y axis, and 5 overlapping slices on the x axis. Addi-
tional two slices fully covering each axis are used to denote lack
of constraints on that axis.

We use IntersectionOverArea ≥ 0.9 as the criteria for
considering a box as contained in a cell grid. Namely the
intersection between the box and the grid, divided by the
box area should be at least 0.9.

3.2. Query encoding

We represent user queries using k-hot encodings. For
label encoding, given an object detection problem with C
classes, we use a C-dimensional binary vector, where each
bit indicates a given class label, and a value of 1 indi-
cates that all objects from that class need to be localized.

For location encoding, we again use a binary representa-
tion. We use the first 3 bits to represent the y-slice, and
the next 5 bits to represent the x-slice, and the all-ones en-
coding to represent the lack of constraints on the y-axis,
or the x-axis. For example, (top, right) is represented
by the [1,0,0,0,0,0,1,0] encoding, (all, far-right) is repre-
sented by the encoding [1,1,1,0,0,0,0,1], and the complete
lack of constraints (all, all) is represented by the encoding:
[1,1,1,1,1,1,1,1]. The final k-hot encoding is obtained by
concatenating the location encoding, to the label encoding.

With respect to BERT embeddings [5], k-hot encodings
are extremely efficient to compute and store, and do not in-
troduce any bias in how they model classes. BERT embed-
dings, on the other hand, incorporate extra prior knowledge,
since similar class names are supposed to have a closer dis-
tance in embedding space. We experimentally compare k-
hot encodings with BERT [5] embeddings in Sec. 4.9.

3.3. Multi-Task Training

A model trained solely to perform query-modulated de-
tection is not suitable as a stand-alone replacement of a stan-
dard object detector (see Sec. 4.5). The main reason is that
the model is trained only using queries for objects actually
present in the image. For example, when presented with an
image not containing the queried label, the modulated fea-
ture maps may “hallucinate” the desired object, returning
high-confidence boxes on unrelated objects. To address the
above issue, we introduce a new multi-task training strategy.
Specifically, for each training image we randomly switch,
with a given task switching ratio, between:

1. Query-modulated detection. Using a query synthe-
sized and encoded as described in 3.1.

2. Standard object detection. In this case the model is
provided the fixed [1, 1, 1, . . . , 1] query, activating all
labels regardless of the image groundtruth.

We call this approach the Query-Modulated object Detector
(QMD). The full architecture is depicted in Fig. 2. Experi-
mental results are provided in Sec. 4.

4. Experiments
4.1. Implementation details

We implemented our models in TensorFlow Object De-
tection API [10], using a RetinaNet [15] architecture with
both mobile and server-side backbones. For the mobile-
friendly models we employed a MobileNet-v2 [28], with
1.0 width multiplier, 320px resolution, L3-L7 128-d FPN-
Lite, and a fully convolutional box predictor with: weight-
sharing across scales, four 128-d layers, and depthwise-
separable convolutions. For the server models we employed
a ResNet-101 [8], with 1024px resolution, L3-L7 256-d

FPN, and a fully convolutional box predictor with four 256-
d layers per scale. For QMD, the query encoding is first
passed through 2 fully connected layers with 512 neurons
each, then `2-normalized, tiled and concatenated across the
spatial dimension of the `2-normalized FPN feature maps.
Finally, the concatenated features are fused together using a
1× 1 convolution, and fed to the box predictor.

4.2. Datasets

The ReferIt dataset [11] comprises 19,894 images, an-
notated with 130,525 expressions spanning 96,654 distinct
objects. We employ the standard 9,000, 1,000 and 10,000
split from [9] for training, validation, and test respectively.
The COCO dataset [16] is a 80-class common object detec-
tion dataset. We use the 2017 version of the dataset. Since
the test annotations are not released and our evaluation pro-
tocol differs from the official one, we perform all our evalu-
ations on the validation set. Open Images Detection (OID)
v4 [12] is a large-scale, large-vocabulary dataset, composed
of more than 1.7M training, 40K validation, and 125K test
images, spanning 600 different classes. Since the test set
annotations are made available, for this dataset we report
metrics as measured on the test set (except where specified).

4.3. Metrics

To evaluate accuracy we adopt the following metrics:

1. Detection (DET): standard mAP for object detection.

2. Query-modulated detection. In this setting the model
is asked to detect all objects for a given query. The im-
age is guaranteed to contain at least one object match-
ing the query. We report the AP measured when solv-
ing for SLD, KLD, or LLD.

Since for query-modulated detection the target label is
provided as an input to the model, it is superfluous to
evaluate the model labeling accuracy. After pruning the
groundtruth with the desired label, we thus assign the re-
maining groundtruth and all detected boxes to one single
class-agnostic label, and evaluate the predictions in a class-
agnostic fashion. Following the standard protocol, COCO
(m)AP is computed using the standard set of [.5:.95] IOUs,
while Open-Images (m)AP is computed with the Open Im-
age V2 metric [19] using 0.5 IOU.

4.4. ReferIt and post-processing baselines for SLD

Why not just using a referring expression model? As
a first experiment to motivate our approach, we use the
COCO 2017 validation set as the target dataset, and com-
pare two obvious baselines to perform query-modulated de-
tection. Namely: 1) Evaluating a model specifically trained
for general referring expression recognition [33]; 2) Post-
processing a standard object detector to retain only the
boxes specified by the user query.

Baseline SLD AP SLD AR@1
Object Detector + Post-processing 47.72 26.32
ReferIt Model [33] 12.19 12.23

Table 1. We compare the performance of a One-Stage BERT Re-
ferring Expressions model [33] trained on ReferIt [11] to a simple
post-processed object detector, on the subset of the COCO valida-
tion that only contains ReferIt entities (labels). See text for details.

For this experiment, we focus on the single label detec-
tion (SLD) metric, as object labels are the most important
and common form of referring expressions [11], and cor-
rectly recognizing them is a necessary condition for recog-
nizing more complex ones.

As a referring expression recognizer baseline, we re-
implement the One-Stage BERT referring expression recog-
nition model [33], and train it on the ReferIt [11] dataset.
Specifically, we use a one-stage SSD architecture with a
ResNet-101 backbone at 320px, with query fusion and spa-
tial encoding features, as in [33]. For query embedding we
use a 768-d BERT embedding from the CLS token. Also,
similarly to [33] we employ several augmentations to avoid
over-fitting on this small training set: random brightness,
hue, saturation, contrast, gray-scale and random crop aug-
mentations. We use a COCO pre-trained feature extractor
and froze all layers, only training the fusion and box predic-
tor modules. Since we are aiming at evaluating the model
on detection data, we neither add a softmax non-linearity
across all anchors, nor do we optimize the anchors on the
ReferIt dataset (as done by [33]). This model achieves
57.1% top-1 accuracy on ReferIt [11]. This is slightly in-
ferior1 to the 59.3% reported in [33], but far above the other
approaches benchmarked in [33], so we feel it is a compa-
rable reproduction.

For the second baseline, we train a standard ResNet101-
SSD detector on COCO (Row 5 in Table 2) and post-process
its outputs by pruning all detections except for that of the
query class.

For a fair evaluation, we only use the subset of the COCO
validation set containing the 73 COCO labels that also ap-
pear in the ReferIt vocabulary (everything except baseball
bat/glove, fire hydrant, hair drier, hot dog, parking meter,
tennis racket). This corresponds to 4,926 validation images.

Results are shown in Table 1. The post-processed object
detector handily outperforms the ReferIt model in both SLD
AP and Recall@1. Besides the ReferIt training set being
much smaller than COCO (9,000 images vs 118,287) and
the dataset shift, this could possibly due also to the ReferIt
model being trained with only a single box associated to
each query. This last factor can be excluded by noting that

1The delta is possibly explained by the absence of soft-max across an-
chors, the lack of anchors customization, as well as the lack of fine-tuning
of the feature extractor.

Average Recall @ 1 is also much lower with respect to the
COCO model. This metric considers only one single top-
confident box for each (query, image) pair.2

To summarize, ReferIt models have poor generalization
abilities due to the very limited number of training sam-
ples, and severely under-perform a simple post-processing
baseline. This motivates developing query-modulated de-
tectors that can directly be trained on large-scale detection
datasets.

4.5. Single Task Query-Modulated Detector

In this Section we discuss the results achieved by QMD
trained solely to solve for query-modulated detection. We
consider both mobile and server models, and perform exper-
iments on both COCO-17 and Open Images Detection v4,
for both object-detection, and query-modulated detection.
In Table 2 we report the SLD AP, KLD AP and detection

Dataset Backbone Model SLD AP KLD AP DET mAP
OID MobileNetV2 Detector 51.3 45.4 27.3
OID MobileNetV2 QMD 67.6 57.2 1.4
COCO MobileNetV2 Detector 28.9 25.6 22.6
COCO MobileNetV2 QMD 33.4 28.0 9.8
COCO ResNet101 Detector 47.7 44.0 38.9
COCO ResNet QMD 49.6 46.1 22.7

Table 2. Single-Task results on OID and COCO. For SLD / KLD
models are asked to put boxes on objects belonging to specific
label(s) in each image. Labels are selected among those appearing
in the groundtruth. For the standard detector this is obtained by
pruning all detections from labels other than the requested one(s).

mAP achieved by these models on the the OID test set, and
the COCO validation set. As a baseline, we report the per-
formance of a standard object detector using the same ar-
chitecture hyper-parameters (feature extractor, input resolu-
tion, FPN layers, etc.). To solve for SLD, and KLD using
a standard object detector, predictions are pruned to retain
only those matching the classes specified in the query. All
detections are then mapped to a single class.

To evaluate the ability of QMD to operate also as a
standard object detector we also compare the COCO mAP
achieved on the task of detecting all objects in the im-
age. For QMD this is achieved by activating all labels on
all images, using a [1, 1, 1, . . . , 1] query. By modulating
the FPN activations to focus on the queried objects, the
MobileNet-based QMD is able to outperform the object de-
tector by +16.3% SLD AP on OID, and +4.5% SLD AP on
COCO. The ResNet model still improves COCO SLD AP
by +1.9%. On the other hand, in the standard detection set-

2For example, if the dataset contained only one image with three
ground-truth “car” boxes, and for the “car” query the ReferIt model pre-
dicted only one box on one single car, while the COCO model predicted
three boxes on three cars, the AR@1 for the two models would be identi-
cal.

ting, triggered by the [1, 1, 1, . . . , 1] query, the single-task
QMD severly underperforms the standard object detector.

The main advantage of QMD with respect to post-
processing a standard object detector is that QMD is trained
for actively “searching” the desired object(s) in the image.
This is particularly important for large-vocabilary datasets
like OID, where the box classification problem is consider-
ably harder compared to COCO, and post-processing might
not be enough to confidently and stably surface the objects
belonging to the user-requested class.

To summarize, QMD significantly outperforms the post-
processing baseline for SLD and KLD. This is especially
true for large-vocabulary problems, where class-confusion
is a more important issue. However, single-task training is
not directly suitable for solving standard object detection.

4.6. Multi-Task Query-Modulated Detector

In this Section we analyze the performance achieved by
QMD trained for both query-modulated detection and stan-
dard object detection, as described in Section 3.3.

Dataset Backbone Model SLD AP KLD AP DET mAP
OID MobileNetV2 Detector 51.3 45.4 27.3
OID MobileNetV2 QMD 63.1 51.5 27.4
COCO MobileNetV2 Detector 28.9 25.6 22.6
COCO MobileNetV2 QMD 32.0 27.8 23.3
COCO ResNet101 Detector 47.7 44.0 38.9
COCO ResNet QMD 50.0 46.5 38.6

Table 3. Multi-Task results on OID and COCO. QMD matches
Detector DET mAP, while outperforming on SLD and KLD AP.

Results for OID-v4 and COCO-17 are summarized in
Table 3. With multi-task training QMD is able to match
the standard detector DET mAP, while still providing large
gains on SLD / KLD (+11.8% on OID). As shown in Fig. 4,
by conditioning on the desired labels, QMD is able to detect
the desired objects even when they are missed, or wrongly
labelled when using the model as a multi-class detector. For
a per-class analysis of the results, please refer to the supple-
mentary material.

To summarize, it is possible to augment an object de-
tector with the ability of leveraging user queries to signif-
icantly improve SLD and KLD AP for the desired labels,
while preserving the DET mAP when no query is specified.

4.7. Efficiency Analysis

In this Section we provide an analysis of QMD effi-
ciency compared to post-processing a standard object de-
tector. Similarly to [30], for both QMD and the standard de-
tector baseline we simultaneously scale up the model width,
depth, and resolution. When scaling the model width, we
increase the width multiplier for backbone, FPN, and box
predictor. When scaling the model depth we increase the
number of layers in the box predictor. Specifically, with
D ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}, we set:

Clock Umbrella Weapon Head Clock Umbrella Weapon Head

Multi-class Detector Multi-class QMD
D

e
te

c
t

S
L
D

Figure 4. Eight top-scoring detections above 0.2 confidence, on COCO validation (clock, umbrella) and OID test (weapon, head) images.
Left: results using a standard object detector. Right: results with Multi-Task QMD. First row: object detection results. Second row: SLD
results, with the corresponding query.

• width multiplier = 1.22D

• layers(box predictor) = 4 +D

• resolution = 320 + 64 ∗D
D = 0 corresponds to models in Table 3. For each subse-
quent D value, FLOPs are approximately doubled (Fig. 5).

FLOPs (B)

%

20

25

30

35

40

45

2 4 6 8 10 20 40 60 80 10
0

20
0

40
0

QMD SLD AP QMD DET mAP Detector SLD AP Detector DET mAP

Accuracy VS FLOPs (COCO)

Figure 5. COCO SLD AP and DET mAP for QMD and a standard
Detector, when varying FLOPs. The FLOPs axis is in log-scale.

We observe that: 1) QMD FLOPs overhead WRT stan-
dard detectors is between 6.8% (372.7B vs 349B - slowest
model) and 7.4% (2.02B vs 1.88B - fastest model). 2) For
all considered computational budgets, QMD outperforms
the vanilla-detector on both SLD AP and DET mAP. We
attribute the DET task efficiency gains to the SLD task pos-
itively affecting the DET task during multi-task training.
3) QMD achieves the same SLD AP of the largest vanilla-
detector (40.9%), with 39x less FLOPS (9B vs 349B).

To summarize, QMD is largely more efficient compared
to traditional object detectors for the SLD task. Thanks to
multi-task training, it is also equally or more efficient for
the standard COCO DET task.

4.8. Localized Label Detection

In this Section we report the performance of QMD when
trained to perform Localized Label Detection (LLD). For

this experiment we only use MobileNetV2 backbones and,
as for the ReferIt model in Section 4.4, we use the spatial
encoding from [33]. As reported in Table 4, adding loca-

Dataset Model LLD AP SLD AP KLD AP DET mAP
OID Detector 55.4 51.3 45.4 27.3
OID QMD 68.1 62.5 50.0 27.4
COCO Detector 31.1 28.9 25.6 22.6
COCO QMD 35.9 32.4 28.0 23.5

Table 4. Localized Label Detection results on OID and COCO.
All models use a MobileNetV2 backbone. QMD is trained in a
multi-task fashion, to solve for both LLD and DET.

tion constraints further improves the results for all models
with respect to SLD. This is expected, as we are making
the problem even simpler by constraining the area where
the objects of interest are searched. Still, similarly to Sec-
tion 4.6, the improvement from SLD to LLD is larger for
QMD than for Detector (+5.6% | +3.5% on OID | COCO
for QMD, vs +4.1% | +2.2% for Detector), even though
QMD SLD baseline is higher (62.5% | 32.4% on OID |
COCO, vs 51.3% | 28.9% for Detector). Visualizations for
the localized queries and the corresponding results are pro-
vided in the supplementary material.

To summarize, while coarse location constraints can be
used to further improve accuracy for all models, QMD is
more effective at leveraging them.

4.9. Ablation studies

We provide here several ablation studies, analyzing the
impact of model and training hyper-parameters. All experi-
ments in this section are performed on the COCO and OID
validation sets.

SLD vs KLD training. We consider two different QMD
training policies, corresponding to the SLD, and KLD met-
rics. In the SLD case, training queries are built by sam-
pling one single label from the image groundtruth, with em-
beddings build as 1-hot vectors. In the KLD case, training

queries are built by sampling each groudtruth label with a
probability of 0.5, with embeddings built as k-hot vectors.
All experiments for this study are performed using only the
MobileNetV2 backbone, and only on the COCO 2017 vali-
dation set. To minimize noise, we only perform this ablation
on the single-task QMD model.

Training SLD AP KLD AP
SLD (1-hot) 33.3 20.0
KLD (k-hot) 33.4 28.7

Table 5. Single-Task MobileNetV2 QMD AP, training with 1-
hot and k-hot, on COCO 2017. All evaluation results are re-
ported on the validation set.

Results in Table 5 show that KLD-training largely out-
performs SLD for the KLD task, while also matching or
outperforming SLD-training for the SLD task. We thus
adopt KLD as the standard training for all experiments in
Sections 4.6 to 4.8.

BERT embeddings. We analyze how BERT [5] embed-
dings compare to binary 1-hot / k-hot embeddings. As
in Section 4.4, BERT embeddings are computed by pass-
ing the textual label to BERT, and extracting the CLS to-
ken. KLD BERT embeddings are obtained by averaging
the BERT embeddings of the k labels.

Training/Evaluation
BERT Type SLD/SLD SLD/KLD KLD/SLD KLD/KLD

Mobile (192) 33.4 13.1 33.0 28.0
Base (768) 33.4 18.6 32.7 27.9

Large (1024) 33.3 18.4 32.8 28.3

Table 6. Single-Task QMD results using BERT embeddings.
For KLD, BERT embeddings of the k labels are simply averaged.

In Table 6 we provide detailed results for different mo-
bile and server BERT embeddings. Increasing the embed-
ding size from 192 to 768, or 1024 does not significantly
improve results. Furthermore, comparing results in Ta-
ble 6 with those in Table 5 shows that in our closed-world
object-detection settings, binary 1-hot / k-hot embeddings
achieve similar or better performance than BERT embed-
dings. Please note that binary 1-hot / k-hot embeddings are
much cheaper to compute and store with respect to their
BERT counterpart. Based on the above observations we em-
ploy binary 1-hot / k-hot embeddings throughout the paper.

Detection Task Sampling Ratio. Figure 6 shows the ef-
fect of varying the detection task sampling ratio during
training, for both COCO and OID validation sets. The opti-
mal value is dataset dependent. For both datasets and most
choices of the task ratio QMD SLD AP is largely better than
Detector SLD AP. On the COCO dataset, multi-task train-
ing improves also the DET mAP for most values.

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

QMD Detection mAP QMD SLD AP

Detector mAP Detector SLD AP

COCO 2017 valid

QMD training detection task ratio

10

30

50

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

QMD Detection mAP QMD SLD AP

Detector mAP Detector SLD AP

OID v4 valid

Figure 6. Effect of varying the training detection task sampling
ratio on the COCO 2017 and OID v4 validation sets.

5. Conclusions

In this work we presented a formulation to build object
detectors that can be queried for detecting specific objects
of interest. We focused on simple queries containing only
the class label(s) of the object(s) of interest, and option-
ally a coarse location. We described how to synthesize and
encode such queries from standard object detection annota-
tions. We demonstrated that a ReferIt model does not gen-
eralize well to large-scale object detection problems, and
is outperformed by a simple detector plus post-processing
baseline. We showed how the post-processing baseline is in
turn largely outperformed by Query-Modulated Detectors.
This is particularly true on large-vocabulary datasets, where
class-confusion is a more severe issue. We also showed how
by jointly training for both standard object-detection and
query-modulated detection, one can efficiently and simulta-
neously solve both problems. Thanks to multi-task training,
QMD even improves performance on the original COCO
object-detection task. Finally, we showed how for QMD,
a simple k-hot query encoding performs equally to BERT,
while being much cheaper to compute and store. Our for-
mulation is generic and can potentially support other types
of queries, and query embeddings. In the future we plan
to investigate training QMD on more complex queries, still
synthesized from large-scale object detection datasets.

References
[1] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-

ing into high quality object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 6154–6162, 2018. 2

[2] Xinpeng Chen, Lin Ma, Jingyuan Chen, Zequn Jie, Wei
Liu, and Jiebo Luo. Real-time referring expression compre-
hension by single-stage grounding network. arXiv preprint
arXiv:1812.03426, 2018. 2

[3] Volkan Cirik, Louis-Philippe Morency, and Taylor Berg-
Kirkpatrick. Visual referring expression recognition: What
do systems actually learn? In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 781–787, 2018. 2

[4] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object
detection via region-based fully convolutional networks. In
Advances in neural information processing systems, pages
379–387, 2016. 2

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1, 2, 4, 8

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 2

[7] K He, G Gkioxari, P Dollar, and R Girshick. Mask r-cnn.
In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 2980–2988, 2017. 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, jun 2016. 4

[9] Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi Feng,
Kate Saenko, and Trevor Darrell. Natural language object
retrieval. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, jun 2016. 5

[10] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,
Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-
jna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy
trade-offs for modern convolutional object detectors. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 7310–7311, 2017. 4

[11] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and
Tamara Berg. Referitgame: Referring to objects in pho-
tographs of natural scenes. In Proceedings of the 2014 con-
ference on empirical methods in natural language processing
(EMNLP), pages 787–798, 2014. 2, 3, 5

[12] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig,
and Vittorio Ferrari. The open images dataset v4: Unified
image classification, object detection, and visual relationship
detection at scale. IJCV, 2020. 3, 5

[13] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 734–750, 2018. 2

[14] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
936–944. IEEE, 2017. 2

[15] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 2, 4

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 3, 5

[17] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 2

[18] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L Yuille, and Kevin Murphy. Generation
and comprehension of unambiguous object descriptions. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 11–20, 2016. 2

[19] Open images v2 detection metric. [online] available at:
https://github.com/tensorflow/models/
blob/master/research/object_detection/
g3doc / evaluation _ protocols . md # open -
images-v2-detection-metric, 2017. 5

[20] Bryan A Plummer, Liwei Wang, Chris M Cervantes,
Juan C Caicedo, Julia Hockenmaier, and Svetlana Lazeb-
nik. Flickr30k entities: Collecting region-to-phrase corre-
spondences for richer image-to-sentence models. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2641–2649, 2015. 2

[21] Jordi Pont-Tuset, Jasper Uijlings, Soravit Changpinyo, Radu
Soricut, and Vittorio Ferrari. Connecting vision and lan-
guage with localized narratives. In European Conference on
Computer Vision, pages 647–664. Springer, 2020. 2

[22] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 2

[23] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster,
stronger. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017. 2

[24] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 2

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 2

[26] S Ren, K He, R Girshick, and J Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. IEEE transactions on pattern analysis and machine
intelligence, 39(6):1137, 2017. 2

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/evaluation_protocols.md#open-images-v2-detection-metric
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/evaluation_protocols.md#open-images-v2-detection-metric
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/evaluation_protocols.md#open-images-v2-detection-metric
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/evaluation_protocols.md#open-images-v2-detection-metric

[27] Arka Sadhu, Kan Chen, and Ram Nevatia. Zero-shot ground-
ing of objects from natural language queries. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 4694–4703, 2019. 2

[28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. IEEE,
jun 2018. 4

[29] Amar Shrestha, Krittaphat Pugdeethosapol, Haowen Fang,
and Qinru Qiu. Magnet: Multi-region attention-assisted
grounding of natural language queries at phrase level. arXiv
preprint arXiv:2006.03776, 2020. 2

[30] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet:
Scalable and efficient object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10781–10790, 2020. 2, 6

[31] Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazebnik.
Learning two-branch neural networks for image-text match-
ing tasks. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 41(2):394–407, 2018. 2

[32] Zhengyuan Yang, Tianlang Chen, Liwei Wang, and Jiebo
Luo. Improving one-stage visual grounding by recursive sub-
query construction. In ECCV, 2020. 2

[33] Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing
Huang, Dong Yu, and Jiebo Luo. A fast and accurate one-
stage approach to visual grounding. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV). IEEE,
oct 2019. 2, 5, 7

[34] Raymond Yeh, Jinjun Xiong, Wen-Mei Hwu, Minh Do, and
Alexander Schwing. Interpretable and globally optimal pre-
diction for textual grounding using image concepts. In Ad-
vances in Neural Information Processing Systems, pages
1912–1922, 2017. 2

[35] Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu,
Mohit Bansal, and Tamara L Berg. Mattnet: Modular atten-
tion network for referring expression comprehension. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1307–1315, 2018. 2

[36] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg,
and Tamara L Berg. Modeling context in referring expres-
sions. In European Conference on Computer Vision, pages
69–85. Springer, 2016. 2

[37] Hanwang Zhang, Yulei Niu, and Shih-Fu Chang. Ground-
ing referring expressions in images by variational context.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4158–4166, 2018. 2

[38] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and
Stan Z Li. Single-shot refinement neural network for ob-
ject detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4203–4212,
2018. 2

[39] Fang Zhao, Jianshu Li, Jian Zhao, and Jiashi Feng. Weakly
supervised phrase localization with multi-scale anchored
transformer network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5696–
5705, 2018. 2

[40] Qijie Zhao, Tao Sheng, Yongtao Wang, Zhi Tang, Ying Chen,
Ling Cai, and Haibin Ling. M2det: A single-shot object de-
tector based on multi-level feature pyramid network. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 9259–9266, 2019. 2

Supplementary Material

1. Visualizations for Localized-Label Detection

In Fig. 7 we provide visualizations for the COCO models
reported in Tab. 4 of the paper. By modulating the detection
using both the label and the coarse location, QMD can better
localize difficult objects with respect to the pipeline with a
standard detector followed by post-processing. This results
in an improvement of +12.7% LLD AP@0.5 for OID, and
+4.8% LLD AP@[.5:.95] for COCO (Sec. 4.8 of the paper).

One limitation of QMD is that it can also seldom out-
put boxes outside the region of interest. I.e. different from
post-processing, QMD does not always 100% suppress the
confidence scores for boxes outside the region of interest.
The confidence for such boxes is normally low. This can be
seen for the “Right Cow” query in Fig. 7.

2. Class-agnostic QMD

In this Section we provide additional results for a class-
agnostic version of multi-task QMD. When using the
[1, 1, 1, ..., 1] query, class-agnostic QMD behaves as a stan-
dard class-agnostic detector, and is thus unable to tell apart
objects from different classes. On the other hand, by re-
questing a given label, it is possible to condition the model
to produce “class-agnostic” boxes only for the desired label.

Dataset Backbone Model SLD AP KLD AP DET AP
OID MobileNetV2 Detector 51.3 45.4 41.7
OID MobileNetV2 QMD 67.2 60.1 46.4
COCO MobileNetV2 Detector 28.9 25.6 25.7
COCO MobileNetV2 QMD 33.3 28.7 27.3
COCO ResNet101 Detector 47.7 44.0 43.4
COCO ResNet QMD 50.5 46.7 44.5

Table 7. Class-agnostic QMD on OID and COCO. For SLD /
KLD the model is asked to put boxes on objects belonging to spe-
cific label(s) in each image. DET AP refers to the class-agnostic
detection AP.

In Tab. 7 we report the results for class-agnostic QMD
on COCO and OID v4. By adopting a simple multi-task
training approach, the class-agnostic detection AP achieved
by QMD is always the highest in the benchmark. Sim-
ilarly to the multi-class results (Sec. 4.6 in the submit-
ted manuscript), we observe much larger gains on OID
v4 (Tab. 7 above) WRT COCO (Tab. 2 on the submitted
manuscript). We believe this is due to the larger number of
classes in OID.

To summarize, the experiment in Tab. 7 shows that
query-modulation could also be used to strongly condition
the class-agnostic box-proposal stage for two-stage object
detectors.

2.1. Visualizations on COCO

In Fig. 8 we visualize outputs of class-agnostic QMD,
on COCO-valid. Standard class-agnostic detection results
are visible in the first row. The second row shows how, by
requesting a given label, it is possible to condition class-
agnostic QMD to produce “class-agnostic” boxes only for
the desired label.

In Fig. 9 we provide some visualizations for class-
agnostic QMD, compared to multiclass detection with
post processing. In many cases (Refrigerator, Teddy
Bear, Horse, Bed) the object cannot be obtained by post-
processing the multi-class detector, as the latter does not
provide a detection for the desired class. On the other
hand, in cases where objects similar to the queried label
are present in the image, QMD can provide false-positive
detections on the distractor objects.

2.2. Per-class results on COCO

In Fig. 10 and Tab. 8 we report the COCO-valid class-
by-class AP achieved by:

• Class-agnostic QMD, with each class queried only on
images actually containing that class.

• Multi-class detector post-processed by pruning out de-
tections for classes not appearing in a given image.

• Multi-class detector as is, reported for reference.

Overall, QMD improves over the post-processing by
4.1%. QMD also provides the highest AP for any given
class, except Snowboard. QMD provides the highest av-
erage improvement WRT the multi-class detector (6.8% =
4.1% + 2.7%).

LL
D

: M
ul

tic
la

ss
 D

et
ec

to
r

w
ith

 p
os

t-
pr

oc
es

si
ng

LL
D

: Q
M

D

score = 0.62

score = 0.41

Top-Right Cup Center-Right BackpackTop-Right Bowl Top-Right RemoteRight CowTop-FarRight Sheep Center Clock

score = 0.52

score = 0.35

Figure 7. Visualization of results for the MobileNetV2 models with Localized Label Detection (LLD) queries. Top: results obtained by
post-processing a standard object detector. Bottom: results obtained by QMD. For each example is reported the LLD query used to generate
it. Visualizations include top 5 boxes above 0.3 confidence. For images where both QMD and the object detector provide a detection we
report the detection score for both models.

Sports Ball

Class-agnostic QMD

D
e

te
c
t

S
L

D

Cat Clock Car Tie Stop Sign Baseball Glove

Figure 8. Visualization of results for the MobileNetV2 class-agnostic QMD on COCO. First row: class-agnostic detection results. Second
row: SLD results, with the corresponding query. Both rows are obtained using class-agnostic QMD.

Refrigerator

M
u
lt
ic

la
s
s
 D

e
te

c
to

r

w
it
h
 p

o
s
t-

p
ro

c
e
s
s
in

g

C
la

s
s
-a

g
n
o
s
ti
c

Q
M

D

Teddy Bear Horse Cat Bed Bowl

Figure 9. Eight top-scoring detections above 0.2 confidence, on COCO-valid. First row: multiclass detector with post-proc, pruning out all
detections for classes not in the image. Second row class-agnostic QMD with the associated query. All models use a MobileNetV2 feature
extractor.

0

10

20

30

40

50

60

70

B
ea

r

B
us

G
ira

ffe

T
oi

le
t

B
ed T

v

R
ef

rig
er

at
or

K
ey

bo
ar

d

M
ou

se

M
ot

or
cy

cl
e

S
an

dw
ic

h

O
ve

n

T
ru

ck

H
ot

 D
og

B
as

eb
al

l G
lo

ve

S
ur

fb
oa

rd

K
ite

S
ui

tc
as

e

P
ot

te
d

P
la

nt

B
as

eb
al

l B
at

B
an

an
a

B
ro

cc
ol

i

S
no

w
bo

ar
d

S
ki

s

A
pp

le

K
ni

fe

H
an

db
ag

Class-agnostic QMD AP (%) Multiclass Detector w/ postproc AP (%)

Multiclass Detector AP (%)

Figure 10. Visualizations of per-class AP obtained by, respectively: class-agnostic QMD; the-multi-class detector post-processed to retain
only detections for classes that do appear in the image; the multi-class detector as is. Classes are sorted by the AP obtained by QMD.
On average QMD improves multi-class detection results by 6.8%, while post-processing only improves AP by 2.7%. All models use a
MobileNetV2 feature extractor.

Class Class-agnostic QMD AP (%) Multiclass Detector w/ postproc AP (%) Multiclass Detector AP (%) (QMD − Multiclass w/ postproc) AP Delta (%) (Multiclass w/ postproc − Multiclass) AP Delta (%)
Refrigerator 44 34 30.1 10 3.9
Teddy Bear 35.7 25.8 24 9.9 1.8
Horse 45.6 35.8 34.4 9.8 1.4
Cat 59.2 50.1 47.3 9.1 2.8
Bed 47.7 38.9 33.5 8.8 5.4
Bowl 32.8 24.4 20.2 8.4 4.2
Cake 29.1 20.9 15.1 8.2 5.8
Toilet 50.6 42.8 41.4 7.8 1.4
Laptop 46.4 38.6 37.2 7.8 1.4
Donut 32.6 24.9 21.6 7.7 3.3
Dining Table 33.8 26.1 20.5 7.7 5.6
Hot Dog 27.5 20.2 14.8 7.3 5.4
Scissors 24.5 17.2 11.3 7.3 5.9
Dog 54.6 47.6 41.7 7 5.9
Hair Drier 7 0 0 7 0
Keyboard 39.9 32.9 29.9 7 3
Bear 66.6 59.7 53.2 6.9 6.5
Couch 42.7 36.1 32.9 6.6 3.2
Fire Hydrant 50.4 44.3 39.8 6.1 4.5
Pizza 44.4 38.4 34.9 6 3.5
Train 58.9 52.9 50.6 6 2.3
Skateboard 31.4 25.6 24.7 5.8 0.9
Truck 30.4 25 20.3 5.4 4.7
Potted Plant 20.1 14.8 10.5 5.3 4.3
Sandwich 33.3 28.2 21.6 5.1 6.6
Motorcycle 35.4 30.4 29.7 5 0.7
Baseball Glove 24.7 19.8 19 4.9 0.8
Baseball Bat 17.8 13 11.5 4.8 1.5
Broccoli 15.4 10.7 10.1 4.7 0.6
Umbrella 25 20.3 18.9 4.7 1.4
Bus 54.9 50.2 47.7 4.7 2.5
Cow 38.9 34.3 30.6 4.6 3.7
Airplane 53.7 49.4 47.8 4.3 1.6
Suitcase 20.9 16.6 13.8 4.3 2.8
Frisbie 46.5 42.3 35.5 4.2 6.8
Clock 37.3 33.2 30.9 4.1 2.3
Surfboard 23.7 19.7 18.2 4 1.5
Oven 32.2 28.3 25.5 3.9 2.8
Tv 46 42.1 38.8 3.9 3.3
Banana 16.1 12.3 11.1 3.8 1.2
Knife 8 4.2 3 3.8 1.2
Sink 25.4 21.6 20.3 3.8 1.3
Cup 23.5 19.8 16.2 3.7 3.6
Tennis Racket 28.4 24.7 24 3.7 0.7
Bottle 16.1 12.6 10.4 3.5 2.2
Sheep 33.8 30.4 27.1 3.4 3.3
Giraffe 52.6 49.3 46.7 3.3 2.6
Chair 16.2 12.9 11.3 3.3 1.6
Bicycle 19.4 16.1 15.2 3.3 0.9
Bench 18.6 15.4 13.3 3.2 2.1
Skis 12.4 9.2 8.8 3.2 0.4
Kite 23.5 20.3 18.9 3.2 1.4
Person 36.4 33.3 33 3.1 0.3
Fork 12.6 9.5 8.5 3.1 1
Microwave 41.1 38.3 33 2.8 5.3
Elephant 49 46.3 44.9 2.7 1.4
Car 24 21.3 20.3 2.7 1
Remote 11.8 9.3 7.5 2.5 1.8
Apple 9.3 7.2 5.2 2.1 2
Wine Glass 15.1 13 11.3 2.1 1.7
Tie 15.7 13.7 12.2 2 1.5
Sports Ball 20.5 18.6 14.9 1.9 3.7
Carrot 14.9 13.1 11.3 1.8 1.8
Vase 21.6 19.9 15.6 1.7 4.3
Spoon 5.2 3.6 2.1 1.6 1.5
Backpack 8.2 6.7 4.7 1.5 2
Bird 20.1 18.7 16.4 1.4 2.3
Parking Meter 32.1 30.9 28.6 1.2 2.3
Cellphone 21 19.9 17.2 1.1 2.7
Zebra 51.9 50.8 50.4 1.1 0.4
Book 5.6 4.6 3.6 1 1
Stop Sign 51.9 50.9 48 1 2.9
Traffic Light 11.2 10.5 9.7 0.7 0.8
Mouse 36.6 36 30.1 0.6 5.9
Toaster 23.6 23.2 15.1 0.4 8.1
Handbag 5.4 5 3.5 0.4 1.5
Toothbrush 8.4 8.1 6.2 0.3 1.9
Boat 12.5 12.3 11.5 0.2 0.8
Orange 17.5 17.4 16.6 0.1 0.8
Snowboard 13 15.5 11.9 -2.5 3.6
Mean 29.4 25.3 22.6 4.1 2.7

Table 8. Per-class localization AP on COCO-valid. For QMD, each class is queried only on images actually containing it. For the
multiclass detector with post-processing, predictions for each class are retained only on images actually containing it. All models use a
MobileNetV2 feature extractor.

	1 . Introduction
	2 . Related Works
	3 . Approach
	3.1 . Query Synthesis
	3.1.1 Localized-Label Detection Query Synthesis

	3.2 . Query encoding
	3.3 . Multi-Task Training

	4 . Experiments
	4.1 . Implementation details
	4.2 . Datasets
	4.3 . Metrics
	4.4 . ReferIt and post-processing baselines for SLD
	4.5 . Single Task Query-Modulated Detector
	4.6 . Multi-Task Query-Modulated Detector
	4.7 . Efficiency Analysis
	4.8 . Localized Label Detection
	4.9 . Ablation studies

	5 . Conclusions
	1 . Visualizations for Localized-Label Detection
	2 . Class-agnostic QMD
	2.1 . Visualizations on COCO
	2.2 . Per-class results on COCO

